• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 9
  • 7
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 139
  • 139
  • 139
  • 36
  • 33
  • 30
  • 28
  • 27
  • 22
  • 21
  • 21
  • 21
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Microwave and RF system for Industrial and Biomedical Applications

Manekiya, Mohammedhusen Hanifbhai 27 May 2021 (has links)
Modern smartphone technology has created a myriad of opportunities in the field of RF and Microwave. Specifically, Chipless RFID sensor, compact microwave filter, antenna based on a microstrip structure, and many more. In this thesis, innovative ideas for the industrial and biomedical device has been explored. The work presents the reconfigurable filter design, Switch-beam antenna, Microwave interferometer, X-band Rotman Lens antenna, Ultra-wideband antenna based on SIW resonator, L-band Stepped Frequency Continuous Wave antenna, development of a wireless sensor system for environmental monitoring, Indoor Air Quality monitoring, and Wildfire Monitoring based on the modulated scattering technique (MST). The MST sensor probes are based on the scattering properties of small passive antennas and radiate part of the impinging electromagnetic field generated by an interrogating antenna, which also acquires the backscattered signal as information. The MST probes are able to deliver data without a radio frequency front end. They use a simple circuit that alternatively terminates the antenna probe on suitable loads to generate a low modulation signal on the backscattered electromagnetic wave. The antenna presented in this work has been designed in ADS Software by Keysight Technologies. The designed antenna has been assessed numerically and experimentally. The experimental measurement data demonstrate the effectiveness of the individual system. Simultaneously, the MST sensor system has been proposed to obtain the best performance in communication range, load efficiency, and power harvesting. The MST sensor has been fabricated and assessed in practical scenarios. The proposed prototype, able to provide a communication range of about 15 m, serves as a proof-of-concept. The acquired measurements of MST demonstrate the accuracy of the data without radio frequency front end or bulky wired connection with the same efficiency of standard wireless sensors such as radio frequency identifier (RFID) or wireless sensor networks (WSN).
62

An Edge-Based Blockchain-Enabled Framework for Preventing Insider Attacks in Internet of Things (IoT)

Tukur, Yusuf M. January 2021 (has links)
The IoT offers enormous potentials thanks to its Widespread adoption by many industries, individuals, and governments, leading explosive growth and remarkable breakthroughs that have made it a technology with seemingly boundless applications. However, the far-reaching IoT applications cum its characteristic heterogeneity and ubiquity come with a huge price for more security vulnerabilities, making the deployed IoT systems increasingly susceptible to, and prime targets of many different physical and cyber-attacks including insider attacks, thereby growing the overall security risks to the systems. This research, which focuses on addressing insider attacks on IoT, studies the likelihood of malicious insiders' activities compromising some of the security triad of Confidentiality, Integrity and Availability (CIA) of a supposedly secure IoT system with implemented security mechanisms. To further establish the vulnerability of the IoT systems to the insider attack being investigated in our research, we first produced a research output that emphasized the need for multi-layer security of the overall system and proposed the implementation of security mechanisms on components at all layers of the IoT system to safeguard the system and ensure its CIA. Those conventional measures however do not safeguard against insider attacks, as found by our experimental investigation of a working IoT system prototype. The outcome of the investigation therefore necessitates our proposed solution to the problem, which leverages the integration of distributed edge computing with decentralized Ethereum blockchain technology to provide countermeasures that preserve the Integrity of the IoT system data and improve effectiveness of the system. We employed the power of Ethereum smart contracts to perform integrity checks on the system data logically and take risk management decisions. We considered the industry use case of Downstream Petroleum sector for application of our solution. The solution was evaluated using datasets from different experimental settings and showed up to 86% accuracy rate. / Government of the Federal Republic of Nigeria through the Petroleum Technology Development Fund (PTDF) Overseas Scholarship Scheme (OSS)
63

[pt] O VEÍCULO CONECTADO: PERSPECTIVAS SOBRE A APLICAÇÃO DA INTERNET DAS COISAS NO TRANSPORTE DE CARGA RODOVIÁRIA / [en] THE CONNECTED VEHICULE: PERSPECTIVES ABOUT THE APPLICATION OF THE INTERNET OF THINGS TO ROAD FREIGHT TRANSPORT

LIVIA GOULART TOVAR 24 July 2019 (has links)
[pt] Os desafios acerca do desenvolvimento sustentável impulsionam medidas governamentais e incentivos a empresas que investem em soluções nessa direção. Alinhado a isso, no que se refere ao setor do transporte rodoviário de cargas, os avanços em tecnologia permitem a gestão de frotas eficiente e a maximização dos lucros de empreendedores do setor. A Internet das Coisas é um meio pelo qual é possível se definir indicadores que auxiliam a operação eficiente das empresas e que possibilitam a análise mais precisa de pegada ambiental em diferentes níveis: desde a escala micro, que compreende o veículo e a empresa, até a escala macro, que compreende o setor de transporte de cargas do país. Esse estudo busca levantar indicadores operacionais e ambientais possíveis de serem desenvolvidos a partir de um estudo de caso em que são fornecidos dados enviados de um veículo e seus componentes conectados à internet. / [en] The challenges upon sustainable development drive government actions and incentives to companies that invest in solutions in this direction. In line with this, with regard to the road freight transport sector, advances in technology allow the efficient fleet management and the maximization of entrepreneurs profit. The Internet of Things is a modern mean by which it is possible to define indicators that help the efficient operation of companies and that allow the more accurate analysis of the environmental footprint at different levels: from the micro scale, which comprises the vehicle and the company, to the macro scale, which comprises the country s freight sector. The environment conservation is one of the pillars of sustainability s concept. A development is considered sustainable when it takes into account social, ecological and economic factors (IUCN, 1980). The warranty of economic interest and reduction of environmental impacts caused by the freight transport sector is relevant to the evolution of the logistics in this direction. The concept of logistics is the activity that manages materials and products evolving, beyond other activities, purchasing, transport, distribution, movement, storage and packing. The part of logistics that consider the aspects and impacts caused by its activities is called Green Logistics or Ecologistics (Donato, 2008). The freight transport is one of the most fast-growing sectors in terms of energy consumption and emissions in Brazil (World Bank, 2011a). According to estimations this sector can be emitting 60 percent more CO2 in 2020 than it had in 2009, of which 36 percent from trucking, 13 percent from buses, 40 percent from passenger cars and 3 percent from motocycles (MMA, 2011). There s an interest towards the carbon emission s growing rates from freight transport. Reducing unnecessary travels without impacting the economic growth is one of the fundamental ways to reduce the intensity of emissions (World Bank, 2011b).
64

Edge-based blockchain enabled anomaly detection for insider attack prevention in Internet of Things

Tukur, Yusuf M., Thakker, Dhaval, Awan, Irfan U. 31 March 2022 (has links)
Yes / Internet of Things (IoT) platforms are responsible for overall data processing in the IoT System. This ranges from analytics and big data processing to gathering all sensor data over time to analyze and produce long-term trends. However, this comes with prohibitively high demand for resources such as memory, computing power and bandwidth, which the highly resource constrained IoT devices lack to send data to the platforms to achieve efficient operations. This results in poor availability and risk of data loss due to single point of failure should the cloud platforms suffer attacks. The integrity of the data can also be compromised by an insider, such as a malicious system administrator, without leaving traces of their actions. To address these issues, we propose in this work an edge-based blockchain enabled anomaly detection technique to prevent insider attacks in IoT. The technique first employs the power of edge computing to reduce the latency and bandwidth requirements by taking processing closer to the IoT nodes, hence improving availability, and avoiding single point of failure. It then leverages some aspect of sequence-based anomaly detection, while integrating distributed edge with blockchain that offers smart contracts to perform detection and correction of abnormalities in incoming sensor data. Evaluation of our technique using real IoT system datasets showed that the technique remarkably achieved the intended purpose, while ensuring integrity and availability of the data which is critical to IoT success. / Petroleum Technology Development Fund(PTDF) Nigeria, Grant/Award Number:PTDF/ED/PHD/TYM/858/16
65

Optimised cloud-based 6LoWPAN network using SDN/NFV concepts for energy-aware IoT applications

Al-Kaseem, Bilal R. January 2017 (has links)
The Internet of Things (IoT) concept has been realised with the advent of Machineto-Machine (M2M) communication through which the vision of future Internet has been revolutionised. IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) provides feasible IPv6 connectivity to previously isolated environments, e.g. wireless M2M sensors and actuator networks. This thesis's contributions include a novel mathematical model, energy-efficient algorithms, and a centralised software controller for dynamic consolidation of programmability features in cloud-based M2M networks. A new generalised joint mathematical model has been proposed for performance analysis of the 6LoWPAN MAC and PHY layers. The proposed model differs from existing analytical models as it precisely adopts the 6LoWPAN specifications introduced by the Internet Engineering Task Force (IETF) working group. The proposed approach is based on Markov chain modelling and validated through Monte-Carlo simulation. In addition, an intelligent mechanism has been proposed for optimal 6LoWPAN MAC layer parameters set selection. The proposed mechanism depends on Artificial Neural Network (ANN), Genetic Algorithm (GA), and Particles Swarm Optimisation (PSO). Simulation results show that utilising the optimal MAC parameters improve the 6LoWPAN network throughput by 52-63% and reduce end-to-end delay by 54-65%. This thesis focuses on energy-efficient data extraction and dissemination in a wireless M2M sensor network based on 6LoWPAN. A new scalable and self-organised clustering technique with a smart sleep scheduler has been proposed for prolonging M2M network's lifetime and enhancing network connectivity. These solutions succeed in overcoming performance degradation and unbalanced energy consumption problems in homogeneous and heterogeneous sensor networks. Simulation results show that by adopting the proposed schemes in multiple mobile sink sensory field will improve the total aggregated packets by 38-167% and extend network lifetime by 30-78%. Proof-of-concept real-time hardware testbed experiments are used to verify the effectiveness of Software-Defined Networking (SDN), Network Function Virtualisation (NFV) and cloud computing on a 6LoWPAN network. The implemented testbed is based on open standards development boards (i.e. Arduino), with one sink, which is the M2M 6LoWPAN gateway, where the network coordinator and the customised SDN controller operated. Experimental results indicate that the proposed approach reduces network discovery time by 60% and extends the node lifetime by 65% in comparison with the traditional 6LoWPAN network. Finally, the thesis is concluded with an overall picture of the research conducted and some suggestions for future work.
66

Internet das coisas aplicada à indústria: dispositivo para interoperabilidade de redes industriais

Keller, Armando Leopoldo 13 January 2017 (has links)
Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2017-04-20T13:56:57Z No. of bitstreams: 1 Armando Leopoldo Keller_.pdf: 2124143 bytes, checksum: ba23113da63873463958e38c05ddbd88 (MD5) / Made available in DSpace on 2017-04-20T13:56:57Z (GMT). No. of bitstreams: 1 Armando Leopoldo Keller_.pdf: 2124143 bytes, checksum: ba23113da63873463958e38c05ddbd88 (MD5) Previous issue date: 2017-01-13 / Nenhuma / O objetivo deste trabalho, é realizar um estudo de forma mais abrangente sobre o conceito de Internet das Coisas e seus principais protocolos. Explora-se especificamente o conceito de IoT (Internet of Things) aplicado em sistemas de automação. Para tanto é apresentada uma revisão bibliográfica sobre o assunto, explorando os diversos protocolos desenvolvidos para aplicações de IoT, caracterizando-os quanto a taxa de transmissão, eficiência, segurança e confiabilidade. Também é realizado um levantamento do cenário atual, quanto a aplicação de protocolos de IoT em sistemas de automação, sempre tendo em mente a confiabilidade do sistema. Percebe-se que um grande dificultador do uso destes tipos de protocolo em ambientes industriais é justamente a heterogeneidade das redes existentes. Diante deste problema, a proposta do trabalho é desenvolver um dispositivo que atue como middleware para a interligação de redes de automação distribuídas, no caso especificamente a rede Modbus RTU, fazendo com que esta interligação seja de forma transparente utilizando o protocolo de Internet das Coisas MQTT (Message Queuing Telemetry Transport). Este dispositivo é testado com equipamentos em um cenário real através de um estudo de caso, onde duas redes Modbus RTU de um sistema geograficamente distribuído de geração de energia solar fotovoltaica, são interligadas, permitindo a criação de uma planta virtual de geração de energia do inglês virtual power plant (VPP). Com isso é possível tratar e gerenciar os sistemas distribuídos de geração como sendo uma única unidade geradora, facilitando o despacho. Para comprovar a eficiência e a confiabilidade do sistema, foram realizados testes onde o tempo entre as requisições e respostas foi medido, e através da sua distribuição foi obtido um tempo de 2,5 segundos para obter uma comunicação com baixa taxa de perda de mensagens. Estes testes comprovam o correto funcionamento do sistema proposto. / The objective of this work is to develop a more comprehensive study on the concept of Internet of Things (IoT) and its main protocols, specifically exploring the concept of IoT applied in automation systems. A bibliographic review explores the diverse protocols developed for IoT applications, characterizing them as transmission rate, efficiency, safety and confiability. A survey of the current scenario about the application of IoT protocols in automation systems is presented, always having the system confiability in mind. The heterogenity of the existent networks makes the use of this protocols a harder task. The proposal of this work is develop a device that acts as middleware for interlink distributed automation networks, in this case the Modbus RTU networks, in a transparent way using the internet of things procol MQTT (Message Queuing Telemetry Transport). This device is tested with equipments in a real scenario trough a case study, where two Modbus RTU networks of a geographically distributed solar photovoltaic power plant, is interlinked, allowing the criation of a VPP (Virtual Power Plant). This makes possible to manage the distributed power generator systems as a single generator unit, improving the electric energy dispatch. To prove the efficiency and confiability of the system, tests were made where the time between request and response was mensured, and based on his distribution the time of 2.5 seconds was determined to have a low message loss communication. Those tests validate the proposed system and the achievement of the goals of the present work.
67

[en] A REAL-TIME REASONING SERVICE FOR THE INTERNET OF THINGS / [pt] UM SERVIÇO DE RACIOCÍNIO COMPUTACIONAL EM TEMPO REAL PARA A INTERNET DAS COISAS

RUHAN DOS REIS MONTEIRO 17 January 2019 (has links)
[pt] O crescimento da Internet das Coisas (IoT) nos trouxe a oportunidade de criar aplicações em diversas áreas com o uso de sensores e atuadores. Um dos problemas encontrados em sistemas de IoT é a dificuldade de adicionar relações semânticas aos dados brutos produzidos por estes sensores e conseguir inferir novos fatos a partir destas relações. Além disso, devido à natureza destes sistemas, os dados produzidos por eles, conhecidos como streams, precisam ser analisados em tempo real. Streams são uma sequência de elementos de dados com variação de tempo e que não devem ser tratados como dados a serem armazenados para sempre e consultados sob demanda. Os dados em streaming precisam ser consumidos rapidamente por meio de consultas contínuas que analisam e produzem novos dados relevantes. A capacidade de inferir novas relações semânticas sobre dados em streaming é chamada de inferência sobre streams. Nesta pesquisa, propomos um modo semântico e um mecanismo para processamento e inferência sobre streams em tempo real baseados em Processamento de Eventos Complexos (CEP), RDF (Resource Description Framework) e OWL (Web Ontology Language). Apresentamos um middleware que suporta uma inferência contínua sobre dados produzidores por sensores. As principais vantagens de nossa abodagem são: (a) considerar o tempo como uma relação-chave entre a informação; (b) processamento de fluxo por ser implementado usando o CEP; (c) é geral o suficiente para ser aplicado a qualquer sistema de gerenciamento de fluxo de dados (DSMS). Foi desenvolvido no Laboratório de Colaboração Avançada (LAC) utlizando e um estudo de caso no domínio da detecção de incêndio é conduzido e implementado, elucidando o uso de inferência em tempo real sobre streams. / [en] The growth of the Internet of Things (IoT) has brought the opportunity to create applications in several areas, with the use of sensors and actuators. One of the problems encountered in IoT systems is the difficulty of adding semantic relations to the raw data produced by the sensors and being able to infer new facts from these relations. Moreover, due to the fact that many IoT applications are online and need to react instantly on sensor data collected by them, they need to be analyzed in real-time. Streams are a sequence of time-varying data elements that should not be stored forever and queried on demand. Streaming data needs to be consumed quickly through ongoing queries that continue to analyze and produce new relevant data, i.e. stream of output/result events. The ability to infer new semantic relationships over streaming data is called Stream Reasoning. We propose a semantic model and a mechanism for real-time data stream processing and reasoning based on Complex Event Processing (CEP), RDF (resource description structure) and OWL (Web Ontology Language). This work presents a middleware service that supports continuous reasoning on data produced by sensors. The main advantages of our approach are: (a) to consider time as a key relationship between information; (b) flow processing can be implemented using CEP; (c) is general enough to be applied to any data flow management system (DSMS). It was developed in the Advanced Collaboration Laboratory (LAC) and a case study in the field of fire detection is conducted and implemented, elucidating the use of real-time inference on streams.
68

Digitisation & Lean Manufacturing : Changes in Manufacturing when the Products are getting Smarter and Connected

Raymann, Roman January 2018 (has links)
Background – Through the progress in information and communication technology (ICT) new possibilities to connect smart objects via the internet arose. The number of connected devices had a strong growth in the past years and will continue rising fast in the next years as well. This new kind of smart and connected products (SCP) enables a lot of new product capabilities which have an impact on the creation of new customer value and competition on the market. Related to that, companies have to deal with digitisation and the affects for their products and manufacturing system. Purpose – The purpose of this thesis is to investigate changes in the manufacturing system when the products are getting smarter and connected. A special focus lays on the well-established Lean thinking approach. The results shall help to understand what new circumstances the decision to make the products smarter and connected will bring for a manufacturing department. Methodology – Relevant literature was reviewed to gain a theoretical framework. For gathering primary data, a qualitative case study was applied. Meetings with members of the case company’s management were arranged to conduct interviews. Additionally, observations were made during a guided tour through the production shop-floor and at a company presentation. The interview was recorded, transcribed and evaluated. Afterwards, the results from the case study were analysed and compared with theory based on the theoretical framework. Conclusions were made. Findings – The differences or changes in manufacturing because the products are getting smarter and connected are much more electronic components and software. Furthermore, new operating equipment is needed. The new circumstances require new knowledge and skills. Therefore, people have to be trained. New problems occur e.g. software problems. The use of Lean tools can be more difficult and time-consuming because of missing know-how and improvements itself are becoming more digital. Contribution – This thesis investigated the effects on the manufacturing system when the products get smarter and connected, which nobody did before. A practical case study with interviews, observations and secondary data from the company was applied. Limitations – The findings match reality based on data from the case company. Available time and access to data from the company’s side were limited. This means that the generalisation must be done with caution. However, it can be said that the findings may apply to many other industrial companies of similar size and similar products.
69

A systematic literature review on cloud of things vulnerability

Pirahandeh, Mehdi January 2018 (has links)
Every day, a new publication on information systems highlights about Cloud of Things (CoT) vulnerabilities; in most of these publications, vulnerability is quoted as the most substantial barrier for CoT realization. However, formulating a justifiable appraisement of the actual vulnerability impact on CoT is difficult because in many of these publications, the term security “vulnerability” is stated incorrectly as a threat or the publication does not discuss CoT-specific vulnerabilities. To achieve a well-founded understanding of CoT vulnerabilities, this literature review identifies the major vulnerabilities and their security controls and to identify any gaps for future research. A systematic literature review (SLR) approach using 58 articles is considered for this review. Based on this review, a taxonomy is created to classify the existing CoT vulnerabilities and security controls. This literature review identifies and discusses similarities and differences among various vulnerability issues and solutions. Most reviews previously performed were limited to the threats to the application interface and virtualization level, whereas this SLR thesis expand to the vulnerabilities in connectivity and things level of CoT. This study emphasize the importance of a clear definition of cloud of things vulnerabilities and to facilitate better understanding and assessment of CoT vulnerabilities to build more secure systems.
70

Self-adaptation for Internet of things applications / Auto-adaptation pour les applications de l’Internet des objets

Acosta Padilla, Francisco Javier 12 December 2016 (has links)
L'Internet des Objets (IdO) couvre peu à peu tous les aspects de notre vie. À mesure que ces systèmes deviennent plus répandus, le besoin de gérer cette infrastructure complexe comporte plusieurs défis. En effet, beaucoup de petits appareils interconnectés fournissent maintenant plus d'un service dans plusieurs aspects de notre vie quotidienne, qui doivent être adaptés à de nouveaux contextes sans l'interruption de tels services. Cependant, ce nouveau système informatique diffère des systèmes classiques principalement sur le type, la taille physique et l'accès des nœuds. Ainsi, des méthodes typiques pour gérer la couche logicielle sur de grands systèmes distribués comme on fait traditionnellement ne peuvent pas être employées dans ce contexte. En effet, cela est dû aux capacités très différentes dans la puissance de calcul et la connectivité réseau, qui sont très contraintes pour les appareils de l'IdO. De plus, la complexité qui était auparavant gérée par des experts de plusieurs domaines, tels que les systèmes embarqués et les réseaux de capteurs sans fil (WSN), est maintenant accrue par la plus grande quantité et hétérogénéité des logiciels et du matériel des nœuds. Par conséquent, nous avons besoin de méthodes efficaces pour gérer la couche logicielle de ces systèmes, en tenant compte les ressources très limitées. Cette infrastructure matérielle sous-jacente pose de nouveaux défis dans la manière dont nous administrons la couche logicielle de ces systèmes. Ces défis peuvent entre divisés en : Intra-nœud, sur lequel nous faisons face à la mémoire limitée et à la puissance de calcul des nœuds IdO, afin de gérer les mises à jour sur ces appareils ; Inter-noeud, sur lequel une nouvelle façon de distribuer les mises à jour est nécessaire, en raison de la topologie réseau différente et le coût en énergie pour les appareils alimentés par batterie ; En effet, la puissance de calcul limitée et la durée de vie de chaque nœud combiné à la nature très distribuée de ces systèmes, ajoute de la complexité à la gestion de la couche logicielle distribuée. La reconfiguration logicielle des nœuds dans l'Internet des objets est une préoccupation majeure dans plusieurs domaines d'application. En particulier, la distribution du code pour fournir des nouvelles fonctionnalités ou mettre à jour le logiciel déjà installé afin de l'adapter aux nouvelles exigences, a un impact énorme sur la consommation d'énergie. La plupart des algorithmes actuels de diffusion du code sur l'air (OTA) sont destinés à diffuser un microprogramme complet à travers de petits fragments, et sont souvent mis en œuvre dans la couche réseau, ignorant ainsi toutes les informations de guidage de la couche applicative. Première contribution : Un moteur de modèles en temps d'exécution représentant une application de l'IdO en cours d'exécution sur les nœuds à ressources limitées. La transformation du méta-modèle Kevoree en code C pour répondre aux contraintes de mémoire spécifiques d'un dispositif IdO a été réalisée, ainsi que la proposition des outils de modélisation pour manipuler un modèle en temps d'exécution. Deuxième contribution : découplage en composants d'un système IdO ainsi qu'un algorithme de distribution de composants efficace. Le découplage en composants d'une application dans le contexte de l'IdO facilite sa représentation sur le modèle en temps d'exécution, alors qu'il fournit un moyen de changer facilement son comportement en ajoutant/supprimant des composants et de modifier leurs paramètres. En outre, un mécanisme pour distribuer ces composants en utilisant un nouvel algorithme appelé Calpulli est proposé. / The Internet of Things (IoT) is covering little by little every aspect on our lives. As these systems become more pervasive, the need of managing this complex infrastructure comes with several challenges. Indeed, plenty of small interconnected devices are now providing more than a service in several aspects of our everyday life, which need to be adapted to new contexts without the interruption of such services. However, this new computing system differs from classical Internet systems mainly on the type, physical size and access of the nodes. Thus, typical methods to manage the distributed software layer on large distributed systems as usual cannot be employed on this context. Indeed, this is due to the very different capacities on computing power and network connectivity, which are very constrained for IoT devices. Moreover, the complexity which was before managed by experts on several fields, such as embedded systems and Wireless Sensor Networks (WSN), is now increased by the larger quantity and heterogeneity of the node’s software and hardware. Therefore, we need efficient methods to manage the software layer of these systems, taking into account the very limited resources. This underlying hardware infrastructure raises new challenges in the way we administrate the software layer of these systems. These challenges can be divided into: intra-node, on which we face the limited memory and CPU of IoT nodes, in order to manage the software layer and ; inter-node, on which a new way to distribute the updates is needed, due to the different network topology and cost in energy for battery powered devices. Indeed, the limited computing power and battery life of each node combined with the very distributed nature of these systems, greatly adds complexity to the distributed software layer management. Software reconfiguration of nodes in the Internet of Things is a major concern for various application fields. In particular, distributing the code of updated or new software features to their final node destination in order to adapt it to new requirements, has a huge impact on energy consumption. Most current algorithms for disseminating code over the air (OTA) are meant to disseminate a complete firmware through small chunks and are often implemented at the network layer, thus ignoring all guiding information from the application layer. First contribution: A models@runtime engine able to represent an IoT running application on resource constrained nodes. The transformation of the Kevoree meta-model into C code to meet the specific memory constraints of an IoT device was performed, as well as the proposition of modelling tools to manipulate a model@runtime. Second contribution: Component decoupling of an IoT system as well as an efficient component distribution algorithm. Components decoupling of an application in the context of the IoT facilitates its representation on the model@runtime, while it provides a way to easily change its behaviour by adding/removing components and changing their parameters. In addition, a mechanism to distribute such components using a new algorithm, called Calpulli is proposed.

Page generated in 0.11 seconds