Spelling suggestions: "subject:"intraarterial chemotherapy"" "subject:"intrarterial chemotherapy""
1 |
Selective Intra-Ophthalmic Artery Chemotherapy for Advanced Intraocular Retinoblastoma: CCHMC Early ExperienceMichaels, Samantha T., M.D. January 2014 (has links)
No description available.
|
2 |
CFD MODELING IN DESIGN AND EVALUATION OF AN ENDOVASCULAR CHEMOFILTER DEVICENazanin Maani (8066141) 02 December 2019 (has links)
<p>Intra-Arterial Chemotherapy (IAC) is a preferred treatment
for the primary liver cancer, despite its adverse side-effects. During IAC, a
mixture of chemotherapeutic drugs, e.g. Doxorubicin, is injected into an artery
supplying the tumor. A fraction of Doxorubicin is absorbed by the tumor, but
the remaining drug passes into systemic circulation, causing irreversible heart
failure. The efficiency and safety of the IAC can be improved by chemical
filtration of the excessive drugs with a catheter-based Chemofilter device, as
proposed by a team of neuroradilogists. </p>
<p>The objective of my work was to optimize the hemodynamic and
drug binding performance of the Chemofilter device, using Computational Fluid
Dynamics (CFD) modeling. For
this, I investigated the performance of two distinct Chemofilter
configurations: 1) a porous “Chemofilter basket” formed by a lattice of
micro-cells and 2) a non-porous “honeycomb Chemofilter” consisting of parallel
hexagonal channels. A multiscale modeling approach was developed to resolve the
flow through a representative section of the porous membrane and
subsequently characterize the overall performance of the device. A heat and
mass transfer analogy was utilized to facilitate the comparison of alternative
honeycomb configurations. </p>
A multiphysics approach was
developed for modeling the electrochemical binding of Doxorubicin to the
anionic surface of the Chemofilter. An effective diffusion coefficient was
derived based on dilute and concentrated solution theory, to account for the
induced migration of ions. Computational predictions were supported by results
of <i>in-vivo</i> studies performed by
collaborators. CFD models showed that the honeycomb Chemofilter is
the most advantageous configuration with 66.8% drug elimination and 2.9 mm-Hg
pressure drop across the device. Another facet of the Chemofilter project was
its surface design with shark-skin inspired texturing, which improves the
binding performance by up to 3.5%. Computational modeling enables optimization
of the chemofiltration device, thus allowing the increase of drug dose while
reducing systemic toxicity of IAC.
|
3 |
Effet d'un traitement au témozolomide par infusion intra-artérielle avec ou sans ouverture osmotique de la barrière hémato-encéphalique / The effect of a temozolomide treament by intra-arterial infusion with or without osmotic disruption of the blood-brain barrierDrapeau, Annie January 2017 (has links)
Le glioblastome (GBM) est la tumeur cérébrale primaire la plus fréquente et agressive chez l’adulte. Son traitement, une exérèse chirurgicale maximale suivi d’un traitement adjuvant (radiothérapie et témozolomide [TMZ]), n’offre qu’un bénéfice modeste de survie médiane (14.6 mois vs. 12.1 mois pour radiothérapie post-chirurgie seule) (STUPP et al., 2005). Le TMZ demeure l’agent de choix pour le traitement du GBM. Malgré sa biodisponibilité approchant 100% suivant son administration per os (PO) (Diez et al., 2009), sa pénétration dans le liquide céphalorachidien n’est que de 20% (Ostermann et al., 2004). Ainsi, il se peut que les limites thérapeutiques du TMZ soient reliées aux barrières hémato-encéphalique (BHE) et hémato-tumorale (BHT). Plusieurs stratégies alternatives tentent de contourner ces barrières comme l’administration intra-artérielle (IA) avec une ouverture osmotique de la BHE (OBHE). Cette technique permet une plus grande distribution d’agent thérapeutique au système nerveux central (SNC). L’utilisation de cette stratégie avec le témozolomide n’a jamais été étudiée à ce jour. Nous avons émis l’hypothèse que son utilisation permettra d’augmenter la concentration de TMZ dans le SNC et que, lorsque combiné avec la radiothérapie, permettra de rehausser son activité anti-tumorale.
Les objectifs du projet sont : (1) l’évaluation de la sensibilité des cellules F98 au TMZ in vitro; (2) la caractérisation de la neuropharmacocinétique du TMZ in vivo, selon différents modes d’administration; et (3) l’évaluation de l’effet anti-tumoral du TMZ in vivo, selon différents modes d’administration. Les expérimentations in vivo ont été exécutées dans le modèle syngénique Fischer-F98, porteur de tumeur gliale. L’expérimentation in vitro a démontré une résistance importante des cellules F98 au TMZ. La méthodologie développée a permis de démontrer que l’infusion IA avec et sans OBHE augmente la concentration maximale et l’aire sous la courbe du TMZ dans la tumeur cérébrale et dans le parenchyme cérébral ipsilatéral du rat Fischer-F98. Par contre, aucun bénéfice de survie n’a été observé en utilisant ces stratégies alternatives. Au contraire, l’acheminement augmenté du TMZ au SNC semble toxique. Un bénéfice de survie a été mesuré suite à l’ajout d’un traitement de radiothérapie, mais de façon indépendante au mode de livraison de TMZ ou de solution saline normale (groupe contrôle). Enfin, nos résultats témoignent de l’impact du mode d’acheminement sur la distribution d’un agent thérapeutique au SNC. En détournant la BHE, l’utilisation judicieuse d’approches alternatives combinée à un agent thérapeutique approprié a un grand potentiel clinique dans le traitement des GBM. / Abstract : Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults. Its’ standard treatment, maximal surgical resection followed by an adjuvant treatment (radiotherapy and temozolomide [TMZ]) offers only a modest median survival benefit of 14.6 months (vs. 12.1 months with post-surgery radiotherapy alone) (Stupp et al., 2005). TMZ remains the therapeutic agent of choice for the treatment of GBM. Despite its bioavailability approaching 100% after a per os administration (Diez et al., 2009), its cerebrospinal fluid penetration is only of 20% (Ostermann et al., 2004). Thus, TMZ’s therapeutic limitations could be due to the blood-brain barrier (BBB) and blood-tumor barrier (BTB). Alternative routes of drug delivery attempt to bypass these barriers. For example, intra-arterial (IA) administration with an osmotic blood-brain barrier disruption (OBBBD) allows greater drug distribution to the central nervous system (CNS). Its use with TMZ, with or without radiotherapy, has never been studied. We hypothesized that it will increase TMZ concentration in the CNS and that, when combined to radiotherapy, it will intensify its anti-neoplastic activity.
The project was divided in three parts: (1) the evaluation of F98 cells’ in vitro sensitivity to TMZ; (2) the in vivo caracterization of TMZ’s neuropharmacokinetics, following different routes of administration; and (3) the in vivo evaluation of TMZ’s anti-tumoral effect, following different routes of administration. The syngenic glioma Fischer-F98 model was used in all in vivo experiments. Our results showed the F98 cells to be resistant to TMZ in vitro. The methodology developed showed that an IA infusion with and without OBBBD increased TMZ’s peak concentration and area under the curve in the brain tumor and ipsilateral brain parenchyma in the Fischer-F98 rat. All the while limiting systemic exposure. However, no survival benefit was observed with the use of these alternative strategies. More so, TMZ’s enhanced delivery to the CNS seemed toxic. A survival benefit was measured following the addition of radiotherapy. This was independent of the route of delivery of TMZ or normal saline. In summary, our results provide evidence that the method of TMZ administration does impact its CNS delivery. By bypassing the BBB, the judicious use of local delivery approaches combined with the appropriate therapeutic agent can have a great clinical potential in the treatment of glioblastomas.
|
Page generated in 0.1045 seconds