Spelling suggestions: "subject:"multiphysics desimulations"" "subject:"multiphysics bysimulations""
1 |
Accurate and Efficient Methods for Multiscale and Multiphysics AnalysisKaiyuan Zeng (6634826) 14 May 2019 (has links)
<div>Multiscale and multiphysics have been two major challenges in analyzing and designing new emerging engineering devices, materials, circuits, and systems. When simulating a multiscale problem, numerical methods have to overcome the challenges in both space and time to account for the scales spanning many orders of magnitude difference. In the finite-difference time-domain (FDTD) method, subgridding techniques have been developed to address the multiscale challenge. However, the accuracy and stability in existing subgridding algorithms have always been two competing factors. In terms of the analysis of a multiphysics problem, it involves the solution of multiple partial differential equations. Existing partial differential equation solvers require solving a system matrix when handling inhomogeneous materials and irregular geometries discretized into unstructured meshes. When the problem size, and hence the matrix size, is large, existing methods become highly inefficient.</div><div><br></div><div>In this work, a symmetric positive semi-definite FDTD subgridding algorithm in both space and time is developed for fast transient simulations of multiscale problems. This algorithm is stable and accurate by construction. Moreover, the method is further made unconditionally stable, by analytically finding unstable modes, and subsequently deducting them from the system matrix. To address the multiphysics simulation challenge, we develop a matrix-free time domain method for solving thermal diffusion equation, and the combined Maxwell-thermal equations, in arbitrary unstructured meshes. The counterpart of the method in frequency domain is also developed for fast frequency-domain analysis. In addition, a generic time marching scheme is proposed for simulating unsymmetrical systems to guarantee their stability in time domain. </div>
|
2 |
Novel methods for improving rapid paper-based protein assays with gold nanoparticle detectionLama, Lara January 2017 (has links)
This thesis describes methods for improving sensitivity in rapid singleplex and multiplex microarray assays. The assays utilize the optical characteristics of colloidal gold nanoparticles for the colorimetric detection of proteins. Multiplexed detection in sandwich immunoassays is limited by cross-reactivity between different detection antibodies. The cross-reactivity between antibodies can contribute to increased background noise - decreasing the Limit-of-Detection of the assay - or generate false positive signals. Paper I shows improved assay sensitivity in a multiplexed vertical flow assay by the application of ultrasonic energy to the gold nanoparticles functionalized with detection antibodies. The ultrasonication of the antibody conjugated gold nanoparticles resulted in a 10 000 fold increase in sensitivity in a 3-plex assay. COMSOL Multiphysics was used to simulate the acoustical energy of the probe used in Paper I for obtaining an indication of the size and direction of the forces acting upon the functionalized gold nanoparticles. In Paper II, it was studied if different gold nanoparticle conjugation methods and colorimetric signal enhancement of the gold nanoparticle conjugates could influence the sensitivity of a paper-based lateral flow microarray assay, targeting cardiac troponin T for the rapid diagnostics of acute myocardial infarction. Ultrasonication and signal enhancement of the detection gold nanoparticles has the potential of improving the sensitivity of paper based assays and expanding their potential future applications. / <p>QC 20170911</p>
|
3 |
Conception et réalisation d'un multicapteur de gaz intégré à base de plateformes chauffantes sur silicium et de couches sensibles à oxyde métallique pour le contrôle de la qualité de l'air habitacleDufour, Nicolas 26 November 2013 (has links) (PDF)
De nombreuses études récentes ont montré la présence de quantités élevées de polluants à l'intérieur de l'habitacle automobile. La solution proposée pour pallier ce problème est l'élaboration d'un capteur de gaz capable de détecter les polluants pénétrant à l'intérieur du véhicule, engendrant la fermeture des volets d'aération lors de l'observation d'un pic de pollution. Les micro-capteurs chimiques à oxydes métalliques sont les meilleurs candidats pour résoudre cette problématique : ils présentent une grande sensibilité à de nombreux gaz, des temps de réponse rapides, et leur coût de production est faible. Leur principal défaut est un manque de sélectivité. Les travaux de recherches effectués ont consisté à mettre au point un micro-dispositif intégrant un réseau multicapteur de gaz à détection conductimétrique : sur une même puce micro-usinée en silicium sont intégrées plusieurs couches sensibles différentes, visant à détecter sélectivement plusieurs gaz : le monoxyde de carbone (CO), le dioxyde d'azote (NO2), l'ammoniac (NH3), l'acétaldéhyde (C2H4O) et le sulfure d'hydrogène (H2S). Pour se faire, trois axes d'études principaux se sont dégagés. La première partie de cette étude s'est portée sur la conception des micro-plateformes chauffantes à l'aide d'un outil de simulations numériques multiphysiques, pour optimiser, d'une part leur structure et leur géométrie afin d'atteindre les performances thermiques escomptées (optimisation du rendement thermoélectrique et minimisation d'interaction d'une cellule à l'autre), et d'autre part les performances thermomécaniques compte tenu de la possibilité d'utiliser un mode de fonctionnement des capteurs en transitoires thermiques rapides. Le modèle obtenu a été validé par comparaison à des mesures physiques. Celui-ci nous a permis d'améliorer le comportement thermique à la surface de la membrane et de réduire les coûts de fabrication en simplifiant le design. La fabrication en centrale technologique de la plateforme multicapteurs a ensuite été réalisée en tenant compte des améliorations proposées par la modélisation. Une étude spécifique sur l'intégration dans le procédé d'une technique industrielle des dépôts des matériaux sensibles par jet d'encre a été menée. Nous avons ainsi mis au point une méthode permettant de déposer rapidement et à bas coûts plusieurs couches sensibles (ZnO, CuO et SnO2) sur une même structure de détection. Enfin, nous avons procédé à l'élaboration d'un système décisionnel, comprenant deux éléments : la mise au point d'un profil optimisé de contrôle des résistances chauffantes et sensibles permettant d'améliorer la sensibilité, la sélectivité et la stabilité, et une analyse multivariée des données. Il a de ce fait été possible de détecter sélectivement la plupart des gaz ciblés (seuls et mélangés) à de faibles concentrations (0,2 ppm de NO2, 2 ppm de C2H4O, 5 ppm de NH3 et 100 ppm de CO).
|
4 |
Multiphysics and Large-Scale Modeling and Simulation Methods for Advanced Integrated Circuit DesignShuzhan Sun (11564611) 22 November 2021 (has links)
<div>The design of advanced integrated circuits (ICs) and systems calls for multiphysics and large-scale modeling and simulation methods. On the one hand, novel devices and materials are emerging in next-generation IC technology, which requires multiphysics modeling and simulation. On the other hand, the ever-increasing complexity of ICs requires more efficient numerical solvers.</div><div><br></div><div>In this work, we propose a multiphysics modeling and simulation algorithm to co-simulate Maxwell's equations, dispersion relation of materials, and Boltzmann equation to characterize emerging new devices in IC technology such as Cu-Graphene (Cu-G) hybrid nano-interconnects. We also develop an unconditionally stable time marching scheme to remove the dependence of time step on space step for an efficient simulation of the multiscaled and multiphysics system. Extensive numerical experiments and comparisons with measurements have validated the accuracy and efficiency of the proposed algorithm. Compared to simplified steady-state-models based analysis, a significant difference is observed when the frequency is high or/and the dimension of the Cu-G structure is small, which necessitates our proposed multiphysics modeling and simulation for the design of advanced Cu-G interconnects. </div><div><br></div><div>To address the large-scale simulation challenge, we develop a new split-field domain-decomposition algorithm amenable for parallelization for solving Maxwell’s equations, which minimizes the communication between subdomains, while having a fast convergence of the global solution. Meanwhile, the algorithm is unconditionally stable in time domain. In this algorithm, unlike prevailing domain decomposition methods that treat the interface unknown as a whole and let it be shared across subdomains, we partition the interface unknown into multiple components, and solve each of them from one subdomain. In this way, we transform the original coupled system to fully decoupled subsystems to solve. Only one addition (communication) of the interface unknown needs to be performed after the computation in each subdomain is finished at each time step. More importantly, the algorithm has a fast convergence and permits the use of a large time step irrespective of space step. Numerical experiments on large-scale on-chip and package layout analysis have demonstrated the capability of the new domain decomposition algorithm. </div><div><br></div><div>To tackle the challenge of efficient simulation of irregular structures, in the last part of the thesis, we develop a method for the stability analysis of unsymmetrical numerical systems in time domain. An unsymmetrical system is traditionally avoided in numerical formulation since a traditional explicit simulation is absolutely unstable, and how to control the stability is unknown. However, an unsymmetrical system is frequently encountered in modeling and simulating of unstructured meshes and nonreciprocal electromagnetic and circuit devices. In our method, we reduce stability analysis of a large system into the analysis of dissembled single element, therefore provides a feasible way to control the stability of large-scale systems regardless of whether the system is symmetrical or unsymmetrical. We then apply the proposed method to prove and control the stability of an unsymmetrical matrix-free method that solves Maxwell’s equations in general unstructured meshes while not requiring a matrix solution.<br></div><div><br></div>
|
5 |
CFD MODELING IN DESIGN AND EVALUATION OF AN ENDOVASCULAR CHEMOFILTER DEVICENazanin Maani (8066141) 02 December 2019 (has links)
<p>Intra-Arterial Chemotherapy (IAC) is a preferred treatment
for the primary liver cancer, despite its adverse side-effects. During IAC, a
mixture of chemotherapeutic drugs, e.g. Doxorubicin, is injected into an artery
supplying the tumor. A fraction of Doxorubicin is absorbed by the tumor, but
the remaining drug passes into systemic circulation, causing irreversible heart
failure. The efficiency and safety of the IAC can be improved by chemical
filtration of the excessive drugs with a catheter-based Chemofilter device, as
proposed by a team of neuroradilogists. </p>
<p>The objective of my work was to optimize the hemodynamic and
drug binding performance of the Chemofilter device, using Computational Fluid
Dynamics (CFD) modeling. For
this, I investigated the performance of two distinct Chemofilter
configurations: 1) a porous “Chemofilter basket” formed by a lattice of
micro-cells and 2) a non-porous “honeycomb Chemofilter” consisting of parallel
hexagonal channels. A multiscale modeling approach was developed to resolve the
flow through a representative section of the porous membrane and
subsequently characterize the overall performance of the device. A heat and
mass transfer analogy was utilized to facilitate the comparison of alternative
honeycomb configurations. </p>
A multiphysics approach was
developed for modeling the electrochemical binding of Doxorubicin to the
anionic surface of the Chemofilter. An effective diffusion coefficient was
derived based on dilute and concentrated solution theory, to account for the
induced migration of ions. Computational predictions were supported by results
of <i>in-vivo</i> studies performed by
collaborators. CFD models showed that the honeycomb Chemofilter is
the most advantageous configuration with 66.8% drug elimination and 2.9 mm-Hg
pressure drop across the device. Another facet of the Chemofilter project was
its surface design with shark-skin inspired texturing, which improves the
binding performance by up to 3.5%. Computational modeling enables optimization
of the chemofiltration device, thus allowing the increase of drug dose while
reducing systemic toxicity of IAC.
|
6 |
Scanning Probe Microscopy Measurements and Simulations of Traps and Schottky Barrier Heights of Gallium Nitride and Gallium OxideGaliano, Kevin 07 October 2020 (has links)
No description available.
|
7 |
Multiscale & Multiphysics Modelling of Thrust Pad (Air) BearingsRoy, Nipon January 2023 (has links)
Without lubrication, machines are not imaginable to perform over a long period of time and complete their designated operations. With its omnipresent availability, the air is capable of functioning as a lubricant in long operations very efficiently. Moreover, thrust bearings support axial loads and transmit power at the same time under heavy loads. Therefore, to provide separation under heavy loads in lubricated rotating devices such as thrust pad bearings keeping the power losses at a minimum, film thickness and pressure distribution are very important to investigate at the bearing interfaces. Thrust pad gas (air) bearings are being used in very high-speed rotating machines. Usages of these air bearings are increasing nowadays in industries. In this thesis project, simulations of lubricated contacts of a thrust pad air bearing are performed utilizing multiphysics phenomena and surface textures as mathematical functions. Structural mechanics and fluid mechanics physics are used to model multiphysics functionality. Ideal surface texture models defined by mathematical functions are utilized. More efficient techniques such as homogenization techniques to model the influences of surface roughness are introduced for multiscale study. The current work also presents the Reynolds equation for incompressible and iso-viscous Newtonian fluid flow and formulation for a stationary study. The air bearing with three pads is presented and a virtual twin of this model is built for simulation in COMSOL Multiphysics software. Simulation results are obtained using a single pad from the air bearing considering periodicity of the mathematical formulation. Numerical solutions for pressure build-up and film thickness distributions are achieved from a stationary study performed in COMSOL Multiphysics. MATLAB is used for rigid body solutions. Numerical verification is carried out between the rigid body solutions from MATLAB and fluid physics solutions from COMSOL Multiphysics only for the simulations with tilting pad configuration. Obtained rigid body solutions are also compared to the trends of thrust pad bearing design diagrams to verify the modelling approach and the results. A tilting pad lubricating configuration is used for the thrust pad bearing first. Then pocket geometries for optimization of the bearing pads are explored. For that purpose, separate digital models of the bearing pad are built in COMSOL and analysed for the best performances. Material properties of steel AISI 4340 and Polylactic Acid (PLA) material are used to model virtual bearing pads. To understand the performance of the bearing better, its performance parameters such as load carrying capacity (LCC), relative power loss, and coefficient of friction torque (COT) solutions from the simulations of lubricated contacts of the thrust pad air bearing are analysed. To characterize the performance of the bearing, dimensionless LCC, relative power loss, and COT are explicitly formulated and computed from the pressure and film thickness solutions obtained in the simulations. Relative power loss and COT are resulted from the development of shear stresses in the lubricating fluid due to motion. Parametric analysis is also performed for these parameters in COMSOL Multiphysics. Additionally, performances of several pocket geometry design configurations are also analysed for the best values reached such as the maximum LCC. Pockets with shallower depths are found to have provided higher LCC in general than deeper pocket geometries and plane pads with tilting pad lubricating configuration. Finally, a physical model of an air thrust pad bearing with 3D-printed bearing segments made of PLA material is tested. The physical bearing performed very well in achieving full film separation in the test.
|
Page generated in 0.092 seconds