• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 6
  • 3
  • Tagged with
  • 23
  • 23
  • 14
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Etudes biochimiques et biophysiques des protéines de la machinerie réplicative des paramyxovirus / Biochemical and biophysical studies of the proteins of the replicative complex of paramyxovirus

Blocquel, David 20 December 2013 (has links)
Les virus Nipah (NiV) et Hendra (HeV) sont des paramyxovirus zoonotiques appartenant au genre Henipavirus. Les paramyxovirus possèdent un génome ARN simple brin de polarité négative encapsidé par la nucléoprotéine (N) au sein d’une nucléocapside hélicoïdale. Cette dernière sert de substrat pour la transcription et la réplication, réalisées par la polymérase virale qui consiste en un complexe entre la protéine L et la phosphoprotéine (P). A l’aide d’approches biophysiques, j’ai établit une cartographie de l’interaction entre la région C-terminale désordonnée de N (NTAIL) et la région C-terminale de P (PXD) chez NiV, HeV et MeV. L’observation à l’échelle atomique par RMN a confirmé l’intervention d’un élément de reconnaissance moléculaire (MoRE) qui subit un repliement α-hélical au contact de PXD. J’ai également montré la capacité des domaines NTAIL et PXD des henipavirus à former des complexes hétérologues soulignant leur proximité structurale. L’interaction NTAIL-PXD, cruciale pour le recrutement de la polymérase virale constitue une cible idéale pour des approches antivirales. Ainsi, un test de criblage à haut débit par HTRF a été mis en place dans le but d’identifier des inhibiteurs. Enfin, une approche structurale a révélé une organisation trimérique de la protéine P de NiV et HeV en solution. La résolution de la structure cristalline de la région de tétramérisation de P du virus de la rougeole montre la présence d’une région désordonnée à proximité du site putatif de recrutement de L. Collectivement, ces résultats représentent une étape clé vers l’élucidation du l’impact fonctionnel de l’oligomérisation de la protéine P sur le cycle réplicatif des paramyxovirus. / Nipah (NiV) and Hendra (HeV) viruses are zoonotic paramyxoviruses that belong to the Henipavirus genus. Paramyxoviruses possess a single-stranded negative-sense RNA genome that is encapsidated by the nucleoprotein (N) into a helical nucleocapsid. This latter is the substrate for both transcription and replication that are carried out by the polymerase, consisting of a complex between the large protein (L) and the phosphoprotein (P). Using various biophysical approaches, I was able to map the interaction between the C-terminal disordered region of N (NTAIL) and the C-terminal region of P (PXD) in NiV, HeV and MeV. Atomic resolution description of the HeV NTAIL-PXD interaction by NMR confirms the involvement of a molecular recognition element (MoRE) of α−helical nature in binding to PXD. I also showed that Henipavirus NTAIL-PXD form heterologous complexes, involving a structural similarity. As this interaction is crucial for the recruitment of the viral polymerase, it is a promising target for antiviral approaches. This prompted me to set up a protein-protein interaction (PPI) assay based on the HTRF technology to identify inhibitors. Finally, I provided the first experimental evidence of a trimeric organization of P proteins in NiV and HeV. We also solved the crystal structure of two different forms of MeV P tetramerization domain who unveiled the presence of a disordered region located near the putative L-binding site and reveal significant structural variations in coiled-coils organization. Collectively, these results represent a key step towards the elucidation of the functional impact of P protein oligomerization on the replicative cycle of paramyxoviruses.
22

Désordre intrinsèque et analyses de réseaux d'interactions extracellulaires : des protéines et polysaccharides aux interactions hôte-Leishmania / Intrinsic disorder and analysis of extracellular interaction networks : from proteins and polysaccharides to host-Leishmania interactions

Peysselon, Franck 12 December 2013 (has links)
Les biomolécules exercent leurs fonctions en interagissant avec d'autres molécules. Le recensement de l'ensemble des biomolécules et leurs interactions permet de construire leurs réseaux d'interactions et de les analyser sur le plan structural et fonctionnel par des outils bioinformatiques (BiNGO, DAVID). Cela permet d'identifier les biomolécules clés, de prédire de nouvelles fonctions des protéines et de comprendre et modéliser les mécanismes moléculaires d'un processus biologique ou pathologique donné. Les protéines ou régions intrinsèquement désordonnées, qui possèdent une grande plasticité structurale, sont susceptibles d'interagir avec de nombreux partenaires et d'être importantes dans les réseaux d'interactions. A l'aide du prédicteur IUPred, nous avons dans un premier temps cartographié le désordre intrinsèque des protéines dans le réseau d'interactions de la matrice extracellulaire et dans le réseau extracellulaire des protéoglycanes construits à partir de la base de données MatrixDB développée dans l'équipe. Nous avons montré que les protéines très connectées de ces deux réseaux ne sont pas enrichies en désordre. Les fonctions moléculaires surreprésentées dans le jeu de protéines extracellulaires contenant au moins 50% de désordre intrinsèque sont les interactions avec les facteurs de croissance ou les glycosaminoglycanes. Nous avons étudié un jeu de données d'interactions protéine-héparine comportant 118 valeurs de cinétique et nous avons montré une relation positive entre la vitesse d'association des protéines à l'héparine et le pourcentage de désordre de leurs sites de fixation à l'héparine. Nous avons également étudié les interactions de la matrice extracellulaire avec un pathogène, le parasite Leishmania. Nous avons montré que les protéines sécrétées par les Leishmania ne sont pas enrichies en désordre par rapport au protéome. Nous avons établi une liste de onze protéines parasitaires sécrétées possédant au moins trois motifs d'interaction et susceptibles d'interagir avec l'hôte / Biomolecules perform their functions by interacting with other molecules. The identification of all biomolecules and their interactions is required to build their interaction networks. Their structural and functional analysis with bioinformatics tools (BiNGO, DAVID) allow us to identify the key biomolecules, to predict new protein functions and to understand and model the molecular mechanisms of biological or pathological process. Intrinsically disordered proteins or regions, which are characterized by structural plasticity, may interact with many partners and may play a role in the interaction networks. Using the predictor IUPred we mapped the intrinsic disorder in protein interaction networks of the extracellular matrix and of the proteoglycans constructed from the MatrixDB database developed in the laboratory. We have shown that the highest connected proteins of these two networks are not enriched in disorder. The molecular functions overrepresented in the set of extracellular proteins containing at least 50% of intrinsically disordered residues are interactions with growth factors or glycosaminoglycans. We studied a dataset of heparin-protein interactions including 118 kinetic values and we have shown that the association rate of proteins with heparin is related to the intrinsic disorder of heparin-binding sites. We also studied the interactions of the extracellular matrix with a pathogen, the parasite Leishmania. We have shown that proteins secreted by Leishmania are not enriched in disorder compared to their proteome. We have selected eleven parasite proteins containing at least three interaction motifs, which may interact with the host
23

A peptide-based interaction screen on disease-related mutations

Meyer, Katrina 26 March 2019 (has links)
Zahlreiche pathogene „missense“-Mutation, die verhindern, dass Proteine korrekt gefaltet werden, befinden sich in geordneten Regionen von Proteinen. Andere krankheitsrelevante Mutationen befinden sich in ungeordneten Regionen und beeinflussen somit nur begrenzt die Funktionalität, zum Beispiel durch Veränderungen kurzer linearer Sequenzmotive, die Protein-Protein Interaktionen vermitteln. In dieser Arbeit wird ein peptidbasierter Interaktionsscreen präsentiert mit dem sich Veränderungen im Interaktom identifizieren lassen. Synthetische Peptide von wild-typ und zugehörigen mutierten Proteinregionen ermöglichen die gleichzeitige Untersuchung von mehr als hundert Mutationen mittels Massenspektrometrie. Mehr als ein Drittel aller getesteten Mutationen hatten veränderte Interaktionen zur Folge. Darunter befanden sich auch drei Prolin zu Leucin Mutationen in zytosolischen Regionen von Transmembranproteinen, die zusammen mit dem benachbarten Leucin einem Dileucinmotiv ergeben und dadurch verstärkt mit Clathrin interagieren. Dieses Motiv wurde bereits mit Clathrin-vermittelter Endozytose in Verbindung gebracht. Die hinzugewonnene Endozytose könnte Krankheitsmechanismen erklären, da die Mislokalisation der betroffenen Transmembranproteine zum effektiven Verlust derer Funktion führen würde. Diese Hypothese wurde hier von verschiedenen in vitro und in vivo Experimenten bezüglich der P485L Mutation im Glukose Transporter-1 (GLUT1), die das GLUT1-Defizit-Syndrom hervorruft, bestätigt. Weitere Evidenz wurde außerdem für die Funktionalität anderer mutationsbedingter Dileucinmotive gewonnen. Die systematische Analyse von pathogenen Mutationen hat gezeigt, dass Dileucinmotive signifikant und spezifisch in ungeordneten zytosolischen Regionen von Transmembranproteinen überrepräsentiert sind. Dieser Peptidescreen macht das Potenzial unvoreingenommener Analysen zur Aufklärung von Krankheitsmechanismen deutlich, die von Veränderungen in Protein-Protein Interaktionen hervorgerufen werden. / Many disease-associated missense mutations prevent proteins from folding correctly and lead to loss-of-function. These mutations are often found in ordered regions of proteins. Another class of disease-related missense mutations can be found in disordered regions. These are thought to impair only specific parts of a protein’s functions. Those mutations could modify short linear motifs that mediate protein-protein interactions. Here, we designed a peptide-based interaction screen to identify interactions that are affected by mutations in disordered regions. We used synthetic peptides corresponding to the wild type and mutated protein regions spotted on cellulose membrane to pull-down interaction partners. This setup allows for the screening of more than hundred mutations at a time via mass spectrometry. Here, we focused on mutations implicated in neurological diseases. More than one-third of tested variant pairs show differential interactions. Three disease-related proline to leucine mutations in cytosolic tails of transmembrane proteins lead to gain of a dileucine sequence. Several dileucine-containing peptide motifs are involved in clathrin-mediated endocytosis (CME). Also in the presented screen, the newly created motifs mediate interaction with the CME machinery. This could explain the disease mechanisms since mislocalization of the affected transmembrane proteins would lead to their loss of function. This hypothesis has been corroborated for glucose transporter-1 (GLUT1) P485L, causing GLUT1 deficiency syndrome. We were able to provide functional evidence also for additional gained dileucine motifs. A systematic analysis of pathogenic mutations revealed dileucine motifs to be overrepresented in structurally disordered cytosolic regions of transmembrane proteins. The data gained with the peptide screen highlights the power of differential interactome mapping as a generic approach to unravel disease mechanisms caused by changes in protein-protein interactions.

Page generated in 0.0525 seconds