• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Monokloninių antikūnų prieš Hendra ir Nipah virusų nukleokapsidės baltymus gavimas ir charakterizavimas / Production and characterization of monoclonal antibodies against Hendra and Nipah virus nucleocapsid proteins

Kairytė, Ieva 25 June 2008 (has links)
Šio darbo tikslas buvo gauti monokloninius antikūnus prieš Hendra ir Nipah virusų nukleokapsidės baltymus. Dėl didelės Henipavirus genties virusų nukleokapsidės baltym�� homologijos sunku gauti monokloninius antikūnus, specifiškus konkretaus viruso nukleokapsidės baltymui. Siekiant išspręsti šią problemą, buvo panaudoti chimeriniai rekombinantiniai baltymai, sukonstruoti pelės poliomos viruso pagrindinio kapsidės baltymo VP1 pagrindu, į kurį buvo įterptos nehomologiškos Nipah ir Hendra virusų nukleokapsidės baltymų sekos. Imunizacijoms panaudojus tokius chimerinius baltymus, buvo nustatyta, kad jie sukelia stiprų imuninį atsaką. Buvo sukurti nauji monokloniniai antikūnai, specifiški tik Nipah viruso nukleokapsidės baltymui ir nereaguojantys su Hendra viruso nukleokapsidės baltymu. Taip pat buvo sukurti monokloniniai antikūnai prieš baltymą-nešiklį – pelės poliomos viruso pagrindinį kapsidės baltymą VP1. Naujai sukurtų antikūnų specifiškumas buvo patvirtintas imunofermentinės analizės ir imunoblotingo metodais. Monokloninių antikūnų prieš Hendra viruso nukleokapsidės baltymą gauti nepavyko. / The aim of this study was to generate monoclonal antibodies against Hendra and Nipah virus nucleocapsid proteins. There is high homology between nucleocapsid proteins of Henipavirus genus members, therefore it is difficult to generate monoclonal antibodies that do not show any cross-reactivity with both antigens. This problem was solved by using recombinant chimeric proteins designed by insertion of non-homological segments of Hendra and Nipah virus nucleocapsid proteins into the mouse polyomavirus capsid protein VP1. Mice were immunized with these chimeric proteins and it was determined that they induce a strong immune response. Monoclonal antibodies against Nipah virus nucleocapsid protein as well as carrier protein – mouse polyomavirus capsid protein VP1 – were generated. The specificities of newly developed monoclonal antibodies were confirmed by ELISA and immunoblot. The generation of specific monoclonal antibodies against Hendra virus nucleocapsid protein failed.
2

Identification et caractérisation des virus à ARN potentiellement pathogènes pour l'homme chez les populations de chauves-souris d'Afrique Centrale / Identification and characterization of RNA viruses potentially pathogenic to humans hosted by the populations of bats in Central Africa

Maganga, Gaël Darren 20 December 2012 (has links)
Le nombre de virus détectés chez les chauves-souris est en augmentation, la plupart étant des virus à ARN. L'identification chez différentes espèces de chauves-souris, de virus ayant été responsables d'épidémies voire de pandémies chez l'homme (coronavirus agent du SRAS, virus Nipah et Hendra, filovirus Ebola et Marburg) a fait prendre conscience du risque que peuvent présenter ces animaux pour la santé humaine, ainsi que des possibilités réelles d'émergence de nouvelles pathologies dans les années futures. Ce travail avait donc pour objectifs: (i) d'identifier et caractériser les virus circulant au sein des populations de chauves-souris d'Afrique Centrale et (ii) d'explorer et d'identifier des déterminants bioécologiques, qui pourraient expliquer la richesse virale observée chez certaines espèces de chauves-souris rencontrées en Afrique tropicale forestière. A partir d'un total de 3472 individus testés, représentant 16 espèces provenant du Gabon, de la République du Congo et de la République Centrafricaine, nous avons confirmé la présence du virus Marburg chez les roussettes d'Egypte (Rousettus aegyptiacus) au Gabon, et mis en évidence des séquences virales de paramyxovirus très proches de virus zoonotiques émergents (les virus Nipah et Hendra) et réémergents (virus des oreillons) chez des chauves-souris frugivores. Des séquences de nouveaux coronavirus, flavivirus et paramyxovirus ont été également identifiées. Par ailleurs, la fragmentation de l'aire de distribution et le type de gîte ont été identifiés comme des déterminants de la richesse virale chez 15 espèces de chauves-souris d'Afrique Centrale. Les chauves-souris en Afrique Centrale seraient donc des réservoirs de virus apparentés à des virus pathogènes pour l'homme. Ces animaux pourraient donc être à l'origine de l'émergence des encéphalites à hénipavirus en Afrique et de la réémergence de certaines maladies humaines comme les oreillons, la rougeole. Des recherches futures s'orienteront vers la poursuite de la caracterisation génétique des virus détectés chez les chauves-souris d'Afrique Centrale et la détermination du risque zoonotique associé à ces virus. Des études écologiques seront également réalisées pour identifier les facteurs de risque d'émeregence des virus de chauves-souris potentiellement pathogènes pour l'homme. / The number of viruses détected in bats is growing, the most common are RNA viruses. The identification in different bat species of viruses that cause major epidemics or pandemics in human such as SARS coronavirus, Nipah and Henda viruses, the filoviruses Ebola and Marburg has raised awareness of potential risk that these animals may present to human health, as well as real possibilities of development of new diseases in future years. This work had two objectives: (i) to identify and characterize the viruses circulating in populations of bats in Central Africa and (ii) to explore and identify bioecological factors that could explain the viral richness observed in some bats species seen in tropical Africa forest. From 3472 individuals tested accounting for 16 species from Gabon, Congo and the Central African Republic, we established the presence of Marburg virus in Egyptian fruit bats (Rousettus aegyptiacus) in Gabon and identified viral sequences of paramyxoviruses close related to emerging and re-emerging zoonotic paramyxoviruses (Nipah virus, Hendra viruses and mumps virus) in fruit bats. Sequences of novel coronaviruses, paramyxoviruses and flaviviruses have also beenidentified. Moreover, the fragmentation of the range and roost type have been identified as determinants of viral richness in 15 bats species of Central Africa. Bats in Central Africa thus would be reservoirs of viruses related to viruses pathogenic for humans. These animals would lead to the emergence of encephalitis Henipavirus in Africa and the reemergence of certain human diseases such as mumps, measles. Further research will be conducted to continue the genetic characterization of viruses detected from bats in Central Africa and to determine the zoonotic risk associated with these viruses. Ecological studies will also be performed to identify the risk factors for the emergence of bats viruses potentially pathogenic for humans.
3

Etude de l'interaction entre le virus Nipah et son hôte réservoir la chauve-souris frugivore : établissement du modèle expérimental / Interaction between Nipah virus and its natural reservoir frugivore Pteropus bats : establishment of an experimental model

Aurine, Noémie 04 July 2019 (has links)
Le virus Nipah (NiV) est un virus hautement pathogène responsable d’encéphalites et de syndromes respiratoires sévères chez l’humain. Les chauves-souris appartenant au genre Pteropus sont le réservoir naturel du NiV et ne développent pas de symptômes cliniques d’infection. Comprendre les relations entre l’hôte réservoir et le pathogène requiert la disponibilité de modèles pertinents pour l’étude des interactions. Les études portent à la fois sur le virus et son hôte. Ainsi, nous avons caractérisé phylogénétiquement la souche cambodgienne du NiV isolée de chauves-souris Pteropus et nous l’avons comparée avec les souches isolées chez l’homme. De plus, en absence du génome de référence pour l’espèce de chauve-souris Pteropus giganteus, nous avons séquencé et assemblé le génome de cette espèce, hôte réservoir de la souche NiV-Bangladesh, qui est en circulation actuellement. Enfin, afin d’obtenir des phénotypes cellulaires plus pertinents que des cellules immortalisées pour l’étude des interactions entre le NiV et les chauves-souris du genre Pteropus – les seules disponibles actuellement - nous avons utilisé la reprogrammation somatique sur des cellules primaires de chauve-souris Pteropus. Cette technique permet d’obtenir des cellules souches présentant la capacité d’autorenouvellement et de différenciation. En utilisant une combinaison originale de trois facteurs de transcription, nous avons généré les premières cellules reprogrammées de chauves-souris Pteropus exprimant des caractéristiques de cellules souches. Nous avons démontré que ces cellules sont très susceptibles à l’infection par le NiV mais incapables de produire de l’interféron et d’activer les cascades de signalisations antivirales en réponse à une stimulation avec de l’ARN double brin, contrairement aux cellules primaires. Le développement de ce modèle original ouvre de nouvelles perspectives pour l’étude des interactions entre l’hôte réservoir et le pathogène et pour l’identification de facteurs contrôlant la susceptibilité à l’infection par le NiV, et potentiellement par d’autres virus hébergés par des chauves-souris. / Nipah virus (NiV) is a highly pathogenic virus that causes encephalitis and severe respiratory syndromes in humans. Pteropus bats are the reservoir of NiV and do not show any clinical symptoms. In order to understand the host reservoir - pathogen interactions, the relevant models are needed. Such studies focus on both the virus and its host. A phylogenetically characterization of the NiV Cambodian strain obtained from Pteropus bats was performed and this virus was compared with human ones. In addition, we sequenced and assembled the genome of Pteropus giganteus bat, the natural host of the NiV-Bangladesh strain, which is currently circulating. Up to date, most studies have used immortalized primary cells that are not natural target of the virus. In order to get reprogrammed stem cells, a somatic reprogramming approach was applied to various Pteropus primary cells. The reprogrammed cells are capable of self-renew and differente in different cell lineages. Using an original mix of transcription factors, we derived reprogrammed cells exhibiting stem cells features. We demonstrated the high susceptibly of these cells to henipavirus infections compared with the very low level of infection of the initial primary cells. Generated bat reprogrammed cells do not induce interferon production and signalisation in response to dsRNA. The development of this original model opens new perspectives on virus-host interaction studies, especially that of cellular anti-viral response by identifying factors controlling either susceptibility or restriction to the NiV infection, and possibly other viruses hosted by bats.
4

Les vecteurs AAV recombinants : un nouvel outil de vaccination contre les Hénipavirus / Recombinant AAV vectors : a new vaccination tool against Henipaviruses

Ploquin, Aurélie 20 September 2012 (has links)
Les virus Hendra (HeV) et Nipah (NiV) sont des virus émergents appartenant à la famille des Paramyxovirus et au genre des Hénipavirus. Chaque année, ils sont responsables de nombreuses épidémies touchant plusieurs espèces animales dont les hommes, avec une forte morbidité et mortalité. À ce jour, aucun vaccin ni traitement ne sont commercialisés. Ce projet porte sur le développement d’un vaccin génétique pour lutter contre une infection par les Hénipavirus. La stratégie suivie, repose sur l’injection in vivo de vecteurs recombinants dérivés du virus Adéno-Associé (AAVr) codant pour la glycoprotéine d’enveloppe G du virus NiV. Une première expérience réalisée chez la souris, a montré qu’une seule injection de vecteurs AAVr par voie IM permet le développement d’une réponse humorale contre la protéine G, forte et stable dans le temps. Afin de tester le pouvoir protecteur de ce vaccin, des hamsters ont été infectés par les Hénipavirus, compte tenu de leur grande sensibilité à ces infections. L’injection de vecteurs AAVr chez ces animaux a permis de protéger 100 % des animaux infectés par le virus NiV et 50 % des animaux infectés par le virus HeV. Cette étude apporte une nouvelle approche de vaccination et de nouvelles perspectives concernant l’utilisation des vecteurs AAVr pour lutter contre des infections virales émergentes. / Nipah virus (NiV) and Hendra virus (HeV) are closely related, recently-emerged Paramyxoviruses, capable of causing considerable morbidity and mortality in several mammalian species, including humans. Commercially available Henipavirus-specific vaccines are still unavailable and development of novel antiviral strategies to prevent this lethal infection is highly desirable. Here we describe the development of Adeno-Associated Virus (AAV) vaccines expressing the NiV G protein. Characterization of these vaccines in mice demonstrated that a single intramuscular AAV injection was sufficient to induce a potent and long lasting antibody response. Translational studies in hamsters further showed that 100 % of vaccinated animals were protected against a lethal challenge with NiV In addition, this vaccine and induced a cross-neutralizing immune response able to protect 50 % of the animals against a challenge HeV. Altogether, this study presents a new vaccination approach which opens new perspectives toward the evaluation of AAV vectors as a vaccine against these emergent diseases.
5

Etudes biochimiques et biophysiques des protéines de la machinerie réplicative des paramyxovirus / Biochemical and biophysical studies of the proteins of the replicative complex of paramyxovirus

Blocquel, David 20 December 2013 (has links)
Les virus Nipah (NiV) et Hendra (HeV) sont des paramyxovirus zoonotiques appartenant au genre Henipavirus. Les paramyxovirus possèdent un génome ARN simple brin de polarité négative encapsidé par la nucléoprotéine (N) au sein d’une nucléocapside hélicoïdale. Cette dernière sert de substrat pour la transcription et la réplication, réalisées par la polymérase virale qui consiste en un complexe entre la protéine L et la phosphoprotéine (P). A l’aide d’approches biophysiques, j’ai établit une cartographie de l’interaction entre la région C-terminale désordonnée de N (NTAIL) et la région C-terminale de P (PXD) chez NiV, HeV et MeV. L’observation à l’échelle atomique par RMN a confirmé l’intervention d’un élément de reconnaissance moléculaire (MoRE) qui subit un repliement α-hélical au contact de PXD. J’ai également montré la capacité des domaines NTAIL et PXD des henipavirus à former des complexes hétérologues soulignant leur proximité structurale. L’interaction NTAIL-PXD, cruciale pour le recrutement de la polymérase virale constitue une cible idéale pour des approches antivirales. Ainsi, un test de criblage à haut débit par HTRF a été mis en place dans le but d’identifier des inhibiteurs. Enfin, une approche structurale a révélé une organisation trimérique de la protéine P de NiV et HeV en solution. La résolution de la structure cristalline de la région de tétramérisation de P du virus de la rougeole montre la présence d’une région désordonnée à proximité du site putatif de recrutement de L. Collectivement, ces résultats représentent une étape clé vers l’élucidation du l’impact fonctionnel de l’oligomérisation de la protéine P sur le cycle réplicatif des paramyxovirus. / Nipah (NiV) and Hendra (HeV) viruses are zoonotic paramyxoviruses that belong to the Henipavirus genus. Paramyxoviruses possess a single-stranded negative-sense RNA genome that is encapsidated by the nucleoprotein (N) into a helical nucleocapsid. This latter is the substrate for both transcription and replication that are carried out by the polymerase, consisting of a complex between the large protein (L) and the phosphoprotein (P). Using various biophysical approaches, I was able to map the interaction between the C-terminal disordered region of N (NTAIL) and the C-terminal region of P (PXD) in NiV, HeV and MeV. Atomic resolution description of the HeV NTAIL-PXD interaction by NMR confirms the involvement of a molecular recognition element (MoRE) of α−helical nature in binding to PXD. I also showed that Henipavirus NTAIL-PXD form heterologous complexes, involving a structural similarity. As this interaction is crucial for the recruitment of the viral polymerase, it is a promising target for antiviral approaches. This prompted me to set up a protein-protein interaction (PPI) assay based on the HTRF technology to identify inhibitors. Finally, I provided the first experimental evidence of a trimeric organization of P proteins in NiV and HeV. We also solved the crystal structure of two different forms of MeV P tetramerization domain who unveiled the presence of a disordered region located near the putative L-binding site and reveal significant structural variations in coiled-coils organization. Collectively, these results represent a key step towards the elucidation of the functional impact of P protein oligomerization on the replicative cycle of paramyxoviruses.
6

Apport de la phylogénomique pour l’étude des interactions moléculaires entre Henipavirus et leurs réservoirs : les chauves-souris du genre Pteropus / Contribution of phylogenomics to the study of molecular interactions between Henipaviruses and their reservoir : Pteropus Bats

Fouret, Julien 14 December 2018 (has links)
Les chauve-souris représentant un réservoir important pour de nombreux virus pathogènes pour l’homme, un ensemble d’études en évolution moléculaire converge vers l’évidence d’une forte pression de sélection au niveau de gènes impliqués dans l’immunité dans l’ordre Chiroptera. En particulier, les chauves-souris du genre Pteropus hébergent des virus de la famille Henipavirus: Nipah et Hendra. Ces virus sont responsables d'épidémies en Asie du sud-est, et bien qu'ayant un taux d'incidence bas, les maladies résultantes de l'infection ont un taux de létalité allant de 40% à 90% chez l'homme. L’infection atteint aussi la plupart des mammifères avec des symptômes clinique graves, (e.g. porc ou cheval : espèces d’intérêt agronomique). La particularité du genre Pteropus est de ne pas développer ces symptômes cliniques graves d’infection. Afin d'en identifier les bases génétiques, nous avons utilisé l'analyse de sélection positive sur l’ensemble du génome codant sans restreindre notre analyse aux gènes de l’immunité. Nous avons mis en place les outils informatiques innovants et nécessaires au déploiement de cette démarche. Ces analyses, reposent sur des séquences de références pour les génomes de différentes espèces, et en absence du génome de référence pour P. giganteus, nous l’avons préalablement séquencé et assemblé. Or, tous les gènes sous sélection ne sont pas forcément liés à notre phénotype d’intérêt mais possiblement à d’autres (e.g. capacité de vol). Nous avons mis en place un algorithme afin d’établir un lien fonctionnel potentiel entre ces gènes identifiés sous sélection positive et un phénotype d’intérêt. / Bats represent a considerable reservoir for an extensive group of human pathogenic viruses. A number of molecular evolution studies points toward the evidence of a strong selection pressure in Chiroptera immune-related genes. Notably, Pteropus bats host viruses from Henipavirus genus: Nipah and Hendra. These viruses are responsible for epidemics in South-Est Asia, and, while the incidence is low, the resulting diseases are highly lethal, ranging between 40 to 90% in humans. Most of mammals are susceptible to the infection (including pigs and horses, animals valued in agronomy), and develop severe clinical symptoms. Specificity of Pteropus genus lies in the absence of clinical symptoms following the infection. In order to identify the genetic basis of this interesting phenomenon, we applied positive selection analysis to the entire coding genome, without bounding our analysis to immune-regulating genes. We have set breakthrough computational tools, without which our analysis would not have been possible. Reference sequences from genome of several species are the groundwork for our analysis. As P. giganteus reference genome has not yet been resolved, we sequenced and assembled it. However, not all genes under positive selection are necessarily linked to a phenotype of interest, but may be linked to other phenotypes (such as the flying ability). We have thus developed an algorithm to establish a possible functional link between the genes identified under positive selection and a phenotype of interest, which allows new perspectives in phylogenomic research.
7

The Ecology of Hendra virus and Australian bat lyssavirus

Field, Hume E. Unknown Date (has links)
Chapter one introduces the concept of disease emergence and factors associated with emergence. The role of wildlife as reservoirs of emerging diseases and specifically the history of bats as reservoirs of zoonotic diseases is previewed. Finally, the aims and structure of the thesis are outlined. In Chapter two, the literature relating to the emergence of Hendra virus, Nipah virus, and Australian bat lyssavirus, the biology of flying foxes, methodologies for investigating wildlife reservoirs of disease, and the modelling of disease in wildlife populations is reviewed. Chapter three describes the search for the origin of Hendra virus and investigations of the ecology of the virus. In a preliminary survey of wildlife, feral and pest species, 6/21 Pteropus alecto and 5/6 P. conspicillatus had neutralizing antibodies to Hendra virus. A subsequent survey found 548/1172 convenience-sampled flying foxes were seropositive. Analysis using logistic regression identified species, age, sample method, sample location and sample year, and the interaction terms age*species and age* sample method as significantly associated with HeV serostatus. Analysis of a subset of the data also identified a significant or near-significant association between time of year of sampling and HeV serostatus. In a retrospective survey, 16/68 flying fox sera collected between 1982 and 1984 were seropositive. Targeted surveillance of non-flying fox wildlife species found no evidence of Hendra virus. The findings indicate that flying foxes are a likely reservoir host of Hendra virus, and that the relationship between host and virus is mature. The transmission and maintenance of Hendra virus in a captive flying fox population is investigated in Chapter four. In study 1, neutralizing antibodies to HeV were found in 9/55 P. poliocephalus and 4/13 P. alecto. Titres ranged from 1:5 to 1:160, with a median of 1:10. In study 2, blood and throat and urogenital swabs from 17 flying foxes from study 1 were collected weekly for 14 weeks. Virus was isolated from the blood of a single aged non-pregnant female on one occasion. In study 3, a convenience sample of 19 seropositive and 35 seronegative flying foxes was serologically monitored monthly for all or part of a two-year period. Three individuals (all pups born during the study) seroconverted, and three individuals that were seropositive on entry became seronegative. Two of the latter were pups born during the study period. Dam serostatus and pup serostatus at second bleed were strongly associated when data from both years were combined (p<0.001; RR=9, 95%CI 1.42 to 57.12). The serial titres of 19 flying foxes monitored for 12 months or longer showed a rising and falling pattern (10), a static pattern (1) or a falling pattern (8). The findings suggest latency and vertical transmission are features of HeV infection in flying foxes. Chapter five describes Australian bat lyssavirus surveillance in flying foxes, insectivorous bats and archived museum bat specimens. In a survey of 1477 flying foxes, 69/1477 were antigen-positive (all opportunistic specimens) and 12/280 were antibody-positive. Species (p<0.001), age (p=0.02), sample method (p<0.001) and sample location (p<0.001) were significantly associated with fluorescent antibody status. There was also a significant association between rapid focus fluorescent inhibition test status and species (p=0.01), sample method (p=0.002) and sample location (p=0.002). There was a near-significant association (p=0.067) between time of year of sampling and fluorescent antibody status. When the analysis was repeated on P. scapulatus alone, the association stronger (p=0.054). A total of 1234 insectivorous bats were surveyed, with 5/1162 antigen–positive (all opportunistic specimens) and 10/390 antibody-positive. A total of 137 archived bats from 10 species were tested for evidence of Australian bat lyssavirus infection by immunohistochemistry (66) or rapid focus fluorescent inhibition test (71). None was positive by either test but 2 (both S. flaviventris) showed round basophilic structures consistent with Negri bodies on histological examination. The findings indicate that Australian bat lyssavirus infection is endemic in Australian bats, that submitted sick and injured bats (opportunistic specimens) pose an increased public health risk, and that Australian bat lyssavirus infection may have been present in Australian bats 15 years prior to its first description. In Chapter six, deterministic state-transition models are developed to examine the dynamics of HeV infection in a hypothetical flying fox population. Model 1 outputs demonstrated that the rate of transmission and the rate of recovery are the key parameters determining the rate of spread of infection, and that population size is positively associated with outbreak size and duration. The Model 2 outputs indicated that that long-term maintenance of infection is inconsistent with lifelong immunity following infection and recovery. Chapter seven discusses alternative hypotheses on the emergence and maintenance of Hendra virus and Australian bat lyssavirus in Australia. The preferred hypothesis is that both Hendra virus and Australian bat lyssavirus are primarily maintained in P. scapulatus populations, and that change in the population dynamics of this species due to ecological changes has precipitated emergence. Future research recommendations include further observational, experimental and/or modeling studies to establish or clarify the route of HeV excretion and the mode of transmission in flying foxes, the roles of vertical transmission and latency in the transmission and maintenance of Hendra virus in flying foxes, and the dynamics of Hendra virus infection in flying foxes.
8

The Ecology of Hendra virus and Australian bat lyssavirus

Field, Hume E. Unknown Date (has links)
Chapter one introduces the concept of disease emergence and factors associated with emergence. The role of wildlife as reservoirs of emerging diseases and specifically the history of bats as reservoirs of zoonotic diseases is previewed. Finally, the aims and structure of the thesis are outlined. In Chapter two, the literature relating to the emergence of Hendra virus, Nipah virus, and Australian bat lyssavirus, the biology of flying foxes, methodologies for investigating wildlife reservoirs of disease, and the modelling of disease in wildlife populations is reviewed. Chapter three describes the search for the origin of Hendra virus and investigations of the ecology of the virus. In a preliminary survey of wildlife, feral and pest species, 6/21 Pteropus alecto and 5/6 P. conspicillatus had neutralizing antibodies to Hendra virus. A subsequent survey found 548/1172 convenience-sampled flying foxes were seropositive. Analysis using logistic regression identified species, age, sample method, sample location and sample year, and the interaction terms age*species and age* sample method as significantly associated with HeV serostatus. Analysis of a subset of the data also identified a significant or near-significant association between time of year of sampling and HeV serostatus. In a retrospective survey, 16/68 flying fox sera collected between 1982 and 1984 were seropositive. Targeted surveillance of non-flying fox wildlife species found no evidence of Hendra virus. The findings indicate that flying foxes are a likely reservoir host of Hendra virus, and that the relationship between host and virus is mature. The transmission and maintenance of Hendra virus in a captive flying fox population is investigated in Chapter four. In study 1, neutralizing antibodies to HeV were found in 9/55 P. poliocephalus and 4/13 P. alecto. Titres ranged from 1:5 to 1:160, with a median of 1:10. In study 2, blood and throat and urogenital swabs from 17 flying foxes from study 1 were collected weekly for 14 weeks. Virus was isolated from the blood of a single aged non-pregnant female on one occasion. In study 3, a convenience sample of 19 seropositive and 35 seronegative flying foxes was serologically monitored monthly for all or part of a two-year period. Three individuals (all pups born during the study) seroconverted, and three individuals that were seropositive on entry became seronegative. Two of the latter were pups born during the study period. Dam serostatus and pup serostatus at second bleed were strongly associated when data from both years were combined (p<0.001; RR=9, 95%CI 1.42 to 57.12). The serial titres of 19 flying foxes monitored for 12 months or longer showed a rising and falling pattern (10), a static pattern (1) or a falling pattern (8). The findings suggest latency and vertical transmission are features of HeV infection in flying foxes. Chapter five describes Australian bat lyssavirus surveillance in flying foxes, insectivorous bats and archived museum bat specimens. In a survey of 1477 flying foxes, 69/1477 were antigen-positive (all opportunistic specimens) and 12/280 were antibody-positive. Species (p<0.001), age (p=0.02), sample method (p<0.001) and sample location (p<0.001) were significantly associated with fluorescent antibody status. There was also a significant association between rapid focus fluorescent inhibition test status and species (p=0.01), sample method (p=0.002) and sample location (p=0.002). There was a near-significant association (p=0.067) between time of year of sampling and fluorescent antibody status. When the analysis was repeated on P. scapulatus alone, the association stronger (p=0.054). A total of 1234 insectivorous bats were surveyed, with 5/1162 antigen–positive (all opportunistic specimens) and 10/390 antibody-positive. A total of 137 archived bats from 10 species were tested for evidence of Australian bat lyssavirus infection by immunohistochemistry (66) or rapid focus fluorescent inhibition test (71). None was positive by either test but 2 (both S. flaviventris) showed round basophilic structures consistent with Negri bodies on histological examination. The findings indicate that Australian bat lyssavirus infection is endemic in Australian bats, that submitted sick and injured bats (opportunistic specimens) pose an increased public health risk, and that Australian bat lyssavirus infection may have been present in Australian bats 15 years prior to its first description. In Chapter six, deterministic state-transition models are developed to examine the dynamics of HeV infection in a hypothetical flying fox population. Model 1 outputs demonstrated that the rate of transmission and the rate of recovery are the key parameters determining the rate of spread of infection, and that population size is positively associated with outbreak size and duration. The Model 2 outputs indicated that that long-term maintenance of infection is inconsistent with lifelong immunity following infection and recovery. Chapter seven discusses alternative hypotheses on the emergence and maintenance of Hendra virus and Australian bat lyssavirus in Australia. The preferred hypothesis is that both Hendra virus and Australian bat lyssavirus are primarily maintained in P. scapulatus populations, and that change in the population dynamics of this species due to ecological changes has precipitated emergence. Future research recommendations include further observational, experimental and/or modeling studies to establish or clarify the route of HeV excretion and the mode of transmission in flying foxes, the roles of vertical transmission and latency in the transmission and maintenance of Hendra virus in flying foxes, and the dynamics of Hendra virus infection in flying foxes.

Page generated in 0.0387 seconds