• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular analysis of J-virus and Beilong virus using reverse genetics

Danielle E. Magoffin January 2006 (has links)
The emergence of viruses in the family Paramyxoviridae, especially those such as Hendra virus and Nipah virus (NiV) that are zoonotic, highlighted the severity of disease that could be caused by infection with viruses belonging to this family. In addition to causing disease outbreaks, several newly discovered paramyxoviruses were found to have unique genetic features, which provoked renewed interest in the study of previously unclassified or uncharacterised viruses in this family. J-virus (JPV) was isolated from wild mice, in Queensland, Australia, in 1972, and has been suggested to be a natural respiratory pathogen of mice. Beilong virus (BeiPV), another paramyxovirus, was first isolated from human mesangial cells in Beijing, China, in 2003, and was subsequently detected in rat mesangial cells. Following initial characterisation, the genomes of JPV and BeiPV were found to contain two genes, SH and TM, not common to other paramyxoviruses, as well as an extended attachment protein gene. BeiPV has the largest genome in the family Paramyxoviridae, which is, in fact, larger than that of any other virus within the order Mononegavirales. The genetic material of paramyxoviruses is not amenable to manipulation via classical genetics; a reverse genetics approach was therefore employed to study the evolution and classification of JPV and BeiPV. Minireplicon systems utilising green fluorescent protein as a reporter were established for JPV, BeiPV and NiV, and were used to better assess the taxonomic status of JPV and BeiPV, and to determine the relationship between these viruses and henipaviruses, which also have exceptionally large genomes. These studies indicate that JPV and BeiPV are closely related and should be classified in the same genus and their replication and transcription machinery is different from that of the henipaviruses. / To gain an understanding of the biology of JPV and BeiPV, viral surface proteins from JPV were expressed and evaluated. Chimeric JPV virions containing recombinant surface proteins were generated and electron microscopy was used to determine the localisation of the proteins encoded by those JPV genes which are uncommon in other paramyxoviruses. Analysis of the attachment protein gene of JPV indicated that the virus was able to assemble an exceptionally large protein (156 kDa) into the virion structure, providing evidence in support of the hypothesis that JPV and BeiPV may represent an ancient lineage of viruses within the family Paramyxoviridae. In order to determine tissue tropism of JPV during experimental infection and to aid future work with a full-length JPV infectious clone, a real-time PCR assay for JPV was developed and assessed on tissues collected from mice infected with JPV. A multiplex microsphere assay for JPV and BeiPV was developed and used to analyse the seroprevalence of these viruses in Australian and Malaysian rodents. Although there is currently no evidence for disease caused by JPV or BeiPV, this does not preclude the emergence of a zoonotic rodent paramyxovirus related to these viruses. If this were to occur, the tools for virus detection and serological monitoring are now established.
2

Etude des mécanismes de haute pathogénicité des Henipavirus / Study on mecanisms of high pathogenicity of Henipaviruses

Dhondt, Kévin 21 November 2014 (has links)
Les Henipavirus sont des paramyxovirus zoonotiques émergents hautement pathogènes. Ils sont capables d’infecter un large spectre d’hôtes incluant notamment la chauve-souris frugivore (réservoir naturel), le porc et l’homme. Etant donné leur très grande dangerosité et en l’absence de traitements curatifs ou prophylactiques efficaces, ces virus doivent être manipulés dans un laboratoire de classe P4. Dans une première partie, nous étudions l’effet de composés glyco-amino-glycanes sur l’infection par les Henipavirus ainsi que leur potentielle application en tant que traitement. Dans une seconde partie, nous nous attachons à comprendre les interactions entre le système immunitaire de l’hôte et le virus. Afin de mieux comprendre ces interactions, nous avons utilisé une approche basée sur l’utilisation de souris déficientes pour certaines voies de l’immunité. En effet, bien que les récepteurs cellulaires au virus (EFN B2 et B3) soient fonctionnels chez la souris, celle-ci est résistante à l’infection par voie intrapéritonéale. Nous avons analysé la susceptibilité au virus Nipah (NiV) de souris privées de différentes voies du système immunitaire inné et adaptatif. Les résultats obtenus permettent d’envisager certaines lignées de ces souris comme nouveaux modèles animaux pour l’étude de l’immunopathogénèse du NiV. Cette étude suggère aussi que le système interféron de type I joue un rôle crucial dans la limitation de la propagation virale vers le cerveau et que les lymphocytes T sont nécessaires à la complète élimination du virus. Les macrophages jouent, quant à eux, un rôle central et indispensable, à l’interface entre système inné et adaptatif. Enfin, nous abordons les prémices d’un projet visant à identifier les différences d’interactions au niveau moléculaire entre les protéines non-structurales du virus et les protéines du système immunitaire inné chez l’Homme et la souris afin de voir s’il se dégage des différences d’interactions pouvant expliquer les différences de pathogénie. Ces travaux ont donc permis d’identifier de nouveaux modèles animaux et de mieux caractériser les interactions entre le pathogène et le système immunitaire de l’hôte, de l’échelle moléculaire à l’échelle de l’organisme entier. Néanmoins, les mécanismes précis de ces interactions restent à élucider et permettront certainement de mieux comprendre la grande diversité de pathogénie des Henipavirus. / Henipaviruses are highly pathogenic emerging zoonotic paramyxoviruses. They can infect a broad spectrum of mammals including flying foxes (Pteropus fruit bats), its reservoir, pigs and humans. As there are neither therapeutic drugs nor efficient prophylactic treatment towards these highly lethal viruses, they have to be manipulated in biosafety level-4 laboratories. In the first part of this thesis, we study the role of glyco-amino-glycans on Henipavirus infection and their potential use as treatment. In the second part, we describe the interaction between the host immune system and the pathogen. To investigate these interactions, we took advantage of different transgenic mouse models deficient for some immune pathways. Indeed, although mice possess the viral entry receptor for Henipaviruses, they do not succumbed to intraperitoneal infection. We analyzed the susceptibility to Nipah virus (NiV) infection of mice deleted for different components of innate and adaptive immune systems. Obtained results showed that some of these mice can be used as new models for NiV immunopathogenesis study. This study also suggests that type I interferon system plays a major role in limitation of viral spreading to the brain and that T cells are necessary for full viral clearance. Macrophages act at the crossroad of immunity, between innate and adaptive system. Finally, we deal with the preliminary phases of a project which aims to identify the differences, at a molecular level, of interaction between non-structural viral proteins and innate immunity proteins in mice and human. Such differences could explain the different clinical patterns that are observed in these species. In conclusion, this thesis allowed to identify new animal models and to better characterize host-pathogen interactions, from molecular to whole organism level. However, the precise mecanisms of these interactions remain to be elucidated and would probably help to understand the great diversity of pathogeny of Henipaviruses.
3

Etude de l'interaction entre le virus Nipah et son hôte réservoir la chauve-souris frugivore : établissement du modèle expérimental / Interaction between Nipah virus and its natural reservoir frugivore Pteropus bats : establishment of an experimental model

Aurine, Noémie 04 July 2019 (has links)
Le virus Nipah (NiV) est un virus hautement pathogène responsable d’encéphalites et de syndromes respiratoires sévères chez l’humain. Les chauves-souris appartenant au genre Pteropus sont le réservoir naturel du NiV et ne développent pas de symptômes cliniques d’infection. Comprendre les relations entre l’hôte réservoir et le pathogène requiert la disponibilité de modèles pertinents pour l’étude des interactions. Les études portent à la fois sur le virus et son hôte. Ainsi, nous avons caractérisé phylogénétiquement la souche cambodgienne du NiV isolée de chauves-souris Pteropus et nous l’avons comparée avec les souches isolées chez l’homme. De plus, en absence du génome de référence pour l’espèce de chauve-souris Pteropus giganteus, nous avons séquencé et assemblé le génome de cette espèce, hôte réservoir de la souche NiV-Bangladesh, qui est en circulation actuellement. Enfin, afin d’obtenir des phénotypes cellulaires plus pertinents que des cellules immortalisées pour l’étude des interactions entre le NiV et les chauves-souris du genre Pteropus – les seules disponibles actuellement - nous avons utilisé la reprogrammation somatique sur des cellules primaires de chauve-souris Pteropus. Cette technique permet d’obtenir des cellules souches présentant la capacité d’autorenouvellement et de différenciation. En utilisant une combinaison originale de trois facteurs de transcription, nous avons généré les premières cellules reprogrammées de chauves-souris Pteropus exprimant des caractéristiques de cellules souches. Nous avons démontré que ces cellules sont très susceptibles à l’infection par le NiV mais incapables de produire de l’interféron et d’activer les cascades de signalisations antivirales en réponse à une stimulation avec de l’ARN double brin, contrairement aux cellules primaires. Le développement de ce modèle original ouvre de nouvelles perspectives pour l’étude des interactions entre l’hôte réservoir et le pathogène et pour l’identification de facteurs contrôlant la susceptibilité à l’infection par le NiV, et potentiellement par d’autres virus hébergés par des chauves-souris. / Nipah virus (NiV) is a highly pathogenic virus that causes encephalitis and severe respiratory syndromes in humans. Pteropus bats are the reservoir of NiV and do not show any clinical symptoms. In order to understand the host reservoir - pathogen interactions, the relevant models are needed. Such studies focus on both the virus and its host. A phylogenetically characterization of the NiV Cambodian strain obtained from Pteropus bats was performed and this virus was compared with human ones. In addition, we sequenced and assembled the genome of Pteropus giganteus bat, the natural host of the NiV-Bangladesh strain, which is currently circulating. Up to date, most studies have used immortalized primary cells that are not natural target of the virus. In order to get reprogrammed stem cells, a somatic reprogramming approach was applied to various Pteropus primary cells. The reprogrammed cells are capable of self-renew and differente in different cell lineages. Using an original mix of transcription factors, we derived reprogrammed cells exhibiting stem cells features. We demonstrated the high susceptibly of these cells to henipavirus infections compared with the very low level of infection of the initial primary cells. Generated bat reprogrammed cells do not induce interferon production and signalisation in response to dsRNA. The development of this original model opens new perspectives on virus-host interaction studies, especially that of cellular anti-viral response by identifying factors controlling either susceptibility or restriction to the NiV infection, and possibly other viruses hosted by bats.
4

Étude de la modulation de la voie canonique d'activation de NF-kB par les protéines non structurales du virus Nipah / Study of the modulation of the canonical NF-κB pathway by the nonstructural proteins of Nipah virus

Enchéry, François 20 December 2017 (has links)
Le virus Nipah (NiV) est un paramyxovirus zoonotique du genre Henipavirus, qui a émergé en 1998. NiV infecte l'homme et cause des troubles respiratoires et des encéphalites avec une forte létalité. A l’inverse, chez les hôtes naturels de NiV, les chauves-souris de la famille des Pteropodidae, l’infection est asymptomatique. Cependant, les mécanismes permettant aux Pteropodidae de contrôler l’infection sont inconnus à ce jour. NiV produit des protéines non structurales, V, W et C, qui sont des facteurs de virulence. V, W et C inhibent les voies de l’interféron de type 1. De plus, la protéine W inhibe la production de chimiokines in vitro et module la réponse inflammatoire in vivo, mais son mécanisme d’action reste inconnu. La voie NF-κB étant le principal régulateur de la réponse inflammatoire, nous avons émis l’hypothèse que W pourrait moduler la voie NF-κB. Nous avons démontré que la protéine W inhibe l'activation de la voie canonique de NF-κB induite par TNFα et IL-1β, effet pour lequel sa région C-terminale spécifique est nécessaire. Nous avons également identifié quels signaux d’import et d’export nucléaires de W sont nécessaires à son effet inhibiteur et ainsi mis en évidence l’importance du trafic nucléo-cytoplasmique de W pour l’inhibition de NF-κB. L’étude des interactions de W avec les protéines cellulaires nous a permis d’identifier un partenaire prometteur connu pour son rôle dans le rétrocontrôle négatif de NF-κB. Enfin, le rôle de W dans l'inhibition de la voie NF-κB a été démontré pendant l'infection par NiV. Les résultats obtenus ouvrent la voie à la compréhension du mécanisme par lequel W module la réponse inflammatoire. Finalement, afin de mieux comprendre le contrôle de l’infection de NiV par son hôte naturel, nous avons généré des lignées cellulaires primaires et immortalisées de chauve-souris Pteropus giganteus. Ces cellules devraient permettre de mieux comprendre les mécanismes par lesquels ces chauves-souris contrôlent l’infection virale. / Nipah virus (NiV), from Henipavirus genus, is a zoonotic paramyxovirus, which emerged in 1998. In humans, it causes acute respiratory distress and encephalitis with a high lethality. Conversely, the natural hosts of NiV, bats from the Pteropodidae family, are asymptomatic. The mechanisms by which the Pteropodidae control infection are unknown to date. NiV produces non-structural proteins, V, W and C, which are virulence factors. V, W and C inhibit the type 1 interferon pathways. Moreover, W inhibits the production of chemokines in vitro and modulates the inflammatory response in vivo, but its mechanism remains unknown. The NF-κB pathway being the main regulator of the inflammatory response, we hypothesized that W could modulate the NF-κB pathway. We demonstrated that protein W inhibits the activation of the NF-κB canonical pathway induced by TNFα and IL-1β. The specific C-terminal region of W is necessary for this effect. We have also identified which nuclear import and export signals of W are necessary for its inhibitory effect and thus highlight the importance of the nucleo-cytoplasmic trafficking of W for the inhibition of NF-κB. The study of the interactions of W with the cellular proteins allowed us to identify a promising partner known for its role in the negative feedback of NF-κB. Finally, the role of W in the inhibition of the NF-κB pathway was demonstrated during the infection with NiV. The results obtained open the way to understanding the mechanism by which W modulates the inflammatory response. Finally, to better understand the control of the infection of NiV by its natural host, we generated primary and immortalized cell lines of Pteropus giganteus bat. These cells should provide a better understanding of the mechanisms by which these bats control viral infection.
5

Pathogenèse de l’infection par le virus Nipah / Pathogenesis of Nipah virus infection

Mathieu, Cyrille 15 December 2011 (has links)
Le virus Nipah (NiV) est un Paramyxovirus zoonotique hautement pathogène, porté par les chauves-souris frugivores, qui a émergé en 1998 en Malaisie. Les épidémies liées à ce virus encéphalitogène continuent de se succéder en Inde et au Bangladesh avec une mortalité pouvant dépasser les 90%. Devant l’absence de traitement et de vaccin, le NiV a été placé parmi les pathogènes de classe 4 requérant le plus haut niveau de biosécurité pour sa manipulation. L’étude des interactions entre le virus et les cellules du sang nous a permis de montrer que le NiV utilise les héparanes sulfates présents sur les leucocytes pour s’accrocher et se disséminer dans l’organisme et atteindre les cellules endothéliales. L’héparine inhibe ce processus ainsi que l’infection in vitro et in vivo mettant en avant une perspective de traitement applicable dans les pays émergents. Par ailleurs, l’analyse transcriptomique des cellules endothéliales infectées par le NiV a révélé l’implication de chimiokines dans la pathogenèse. CXCL10 apparaît en effet comme un marqueur voir une cible dans le cadre du développement de l’encéphalite virale, et l’interféron type 1 comme l’un des facteurs essentiels de la résistance des souris au NiV. Enfin, j’ai montré que la protéine non structurale C du NiV joue un rôle essentiel dans sa virulence, en atténuant la réponse interféron, en perturbant la réponse chimiokine lors de l’infection et en intervenant dans le maintien de la balance génome / antigénome lors du cycle réplicatif viral. Ces résultats permettent une meilleure compréhension de la pathogenèse du NiV et ouvrent de nouvelles perspectives de traitement contre ce virus zoonotique très dangereux pour l’homme / Nipah virus (NiV) is a highly pathogenic zoonotic Paramyxovirus that emerged in 1998 in Malaysia from frugivorous bats. The outbreaks of this encephalitic virus still occur annually in India and Bangladesh with the mortality rate reaching up to 90%. The lack of an effective vaccine or treatment limits experimentation with live virus to specially equipped BioSafety Level 4 laboratories. Studies of the interaction between the virus and blood cells revealed that NiV uses Heparan sulfates to stick on the surface of leukocytes for its dissemination within the host and reach endothelial cells. Heparin provided de possibility to inhibit this mechanism of transinfection, such as the infection in vitro and in vivo, opening new perspectives of low cost treatment for emerging countries. Then, transcriptomic analysis of NiV infected endothelial cells revealed the importance of cytokine in the pathogenesis. While CXCL10 appears as a good marker of encephalitis, interferon type 1 explains why mice are resistant to the infection with NiV. Finally, we show the essential role of the non structural C protein of NiV in its virulence, by limiting the interferon response, unbalancing the chemokine response during the infection and through the regulation of the genomic/antigenomic balance during the viral replication cycle. These results shed new light on NiV related pathogenesis and open new perspectives of treatment against this highly lethal zoonotic virus

Page generated in 0.044 seconds