• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 8
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coupling distances between Lévy measures and applications to noise sensitivity of SDE

Gairing, Jan, Högele, Michael, Kosenkova, Tetiana, Kulik, Alexei January 2013 (has links)
We introduce the notion of coupling distances on the space of Lévy measures in order to quantify rates of convergence towards a limiting Lévy jump diffusion in terms of its characteristic triplet, in particular in terms of the tail of the Lévy measure. The main result yields an estimate of the Wasserstein-Kantorovich-Rubinstein distance on path space between two Lévy diffusions in terms of the couping distances. We want to apply this to obtain precise rates of convergence for Markov chain approximations and a statistical goodness-of-fit test for low-dimensional conceptual climate models with paleoclimatic data.
2

Principe d'invariance individuel pour une diffusion dans un environnement périodique. / Individualite invariance principle for diffusions in a periodic environment

Ba, Moustapha 08 July 2014 (has links)
Nous montrons ici, en utilisant les méthodes de l'analyse stochastique, le principe d'invariance pour des diffusion sur $\mathbb{R} ^{d},d\geq 2$, en milieu périodique au delà des hypothèses d'uniforme ellipticité et au delà des hypothèses de régularité sur le potentiel. La théorie du calcul stochastique pour les processus associés aux formes de Dirichlet est largement utilisée pour justifier l'existence du processus de Markov à temps continus, défini pour presque tout point de départ sur $\mathbb{R} ^{d}$. Pour la preuve du principe d'invariance, nous montrons une nouvelle inégalité de type Sobolev avec des poids différents, qui nous permet de déduire l'existence et la bornitude d'une densité de la probabilité de transition associée au processus de Markov. Cette inégalité, est l'outil principal de ce travail. La preuve fera appel à des techniques d'analyse harmonique. Enfin, le chapitre 3 contient le résultat principal du travail de la thèse : le principe d'invariance qui veut dire que la suite de processus $(_{\varepsilon }X_{t\varepsilon ^{-2}})$ converge en loi quand $\varepsilon$ tend vers zéro vers un mouvement Brownien. Notre stratégie suit quelques étapes classiques : nous nous appuyons sur la construction de ce qu'on appelle ici correcteur. Afin de contrôler le correcteur, et aussi pour montrer son existence, nous nous appuyons sur l'inégalité de Sobolev. Le resultat est obenu seulement avec les hypothèses, le potentiel $V$ est périodique et satisfait: $e^{V}+e^{-V}$ locallement dans $L^{1}\left( \mathbb{R} ^{d};dx\right)$ ou $dx$ est la mesure de Lebesgue. / We prove here, using stochastic analysis methods, the invariance principle for a $\mathbb{R} ^{d}$ diffusions $d\geq 2$, in a periodic potential beyond uniform boundedness assumptions of potential. The potential is not assumed to have any regularity. So the stochastic calculus theory for processes associated to Dirichlet forms is used to justify the existence of a continuous Markov process starting from almost all $x\in \mathbb{R} ^{d}$ and denoted by $\left( X_{t},t>0\right)$ (cf chapter 1). In chapter 2, we prove a new Sobolev inequality with different weights by using some materials in harmonic analysis. In chapter 3, we prove the main result (Theorem 1) of this work: the invariance principle. Our strategy for proving Theorem 1 follows some classical steps: we rely on the construction of the so-called corrector. In order to control the corrector, and actually also in order to show its existence, we rely on the Sobolev inequality. All the work is done under the following hypothesis: the potential $V$ is periodic and satisfies $e^{V}+e^{-V}$ are locally in $L^{1}\left( \mathbb{R} ^{d};dx\right)$ where $dx$ is the Lebesgue measure.
3

Modeling dependence and limit theorems for Copula-based Markov chains

Longla, Martial 24 September 2013 (has links)
No description available.
4

Quenched Asymptotics for the Discrete Fourier Transforms of a Stationary Process

Barrera, David 27 May 2016 (has links)
No description available.
5

Extensão do princípio de invariância de LaSalle para sistemas periódicos e sistemas fuzzy / Extension of the LaSalle\'s invariance principle for periodic systems and fuzzy systems

Coimbra, Wendhel Raffa 26 February 2016 (has links)
O princípio de invariância de LaSalle estuda o comportamento assintótico das soluções sem conhecer as soluções das equações diferenciais.Para isto,utiliza uma função auxiliar V usualmente chamada de função de Lyapunov. Este trabalho apresenta um princípio de invariância fuzzy e sua versão global para a classe de sistemas dinâmicos fuzzy descrito, via extensão de Zadeh,por equações diferenciais autônomas com incertezas na condição inicial.Ainda, apresentamos um princípio de invariância uniforme, no qual não se exige que a derivada da função de Lyapunov seja sempre definida negativa, para a classe de sistemas dinâmicos não lineares não autônomos que são descritos por um conjunto de equações diferenciais ordinárias periódicas. Aplicações para as duas classes de sistemas foram desenvolvidas. / The LaSalle\'s invariance principle studies the asymptotic behavior of the solutions without requiring the knowledge of the solutions of differential equations. For this, it uses an auxiliary function V usually called Lyapunov function. This work proposes a fuzzy invariance principle and its global version for the class of fuzzy dynamic systems described, via Zadeh\'s extension, by autonomous ordinary differential equation with uncertainties in the initial condition. Moreover, we develop an uniform invariance principle, in which the derivative of the Lyapunov function is not required to be always negative definite, for the class of non autonomous non linear dynamical system described by a set of periodic ordinary differential equations. Applications for the two classes of systems are also developed.
6

Um princípio de invariância para sistemas discretos / An invariance principle for discrete dynamic systems

Calliero, Taís Ruoso 19 July 2005 (has links)
Muitos sistemas físicos são modelados por sistemas dinâmicos discretos. Com o advento da tecnologia digital os sistemas discretos tornaram-se ainda mais importantes, sendo assim, o desenvolvimento de ferramentas analíticas para este tipo de sistema é de grande importância. Neste trabalho, estudam-se alguns dos principais resultados relacionados à estabilidade de sistemas dinâmicos discretos, e alguns novos são propostos. É bem conhecido na literatura que a estabilidade de um ponto de equilíbrio pode ser caracterizada pelo Método Direto de Lyapunov, via uma função auxiliar denominada função de Lyapunov. LaSalle, ao estudar a teoria de Lyapunov, estabeleceu uma importante relação entre função de Lyapunov e conjuntos limites de Birkhoff, que deu origem ao Princípio de Invariância de LaSalle. Este, entre outras coisas, permite a análise de estabilidade assintótica. Tanto o Método Direto de Lyapunov quanto o Princípio de Invariância requerem que a variação da função de Lyapunov seja não positiva ao longo das trajetórias do sistema. Em sistemas com comportamentos mais complexos, dificilmente encontra-se uma função com esta propriedade. Neste trabalho, propõe-se uma versão mais geral do Princípio de Invariância para sistemas discretos, a qual não exige que a variação da função de Lyapunov seja sempre não positiva. Com isto, a obtenção de funções deste tipo torna-se mais simples e muitos problemas, que antes não poderiam ser tratados com a teoria convencional, passam a ser tratados através deste novo resultado. Os resultados desenvolvi- dos, neste trabalho, são úteis para encontrar estimativas de atratores de sistemas não-lineares discretos. / Many physical systems are modeled by discrete dynamic systems. With the evolution digital technology, the discrete systems became still more important, so the development of analytic tools for this type of system has high importance nowadays. ln this work, some of the main results in stability of discrete dynamic systems are studied and some new ones are proposed. lt is well known in the literature that the stability of an equilibrium point may be characterized by the Lyapunov\'s Direct Method, with a function known as Lyapunov auxiliary function. LaSalle, when studying the Lyapunov theory, established an important relationship between Lyapunov function and Birkhoff limit sets. Then, he created the Lasalle\'s lnvariance Principle. This, among other features, allows the analysis of asymptotically stability. Both the Lyapunov\'s Direct Method and the lnvariance Principle request the variation of the Lyapunov function to be negative semidefinite along the system trajectory. In systems with more complex behaviors, a function is hardly found with this property. This work developed a more general version of the lnvariance Principle for discrete systems, which does not require the variation of the Lyapunov function to be always negative semidefinite. This new theory enables to find these functions easily and many insoluble problems, which could not be treated with the conventional theory before, become treatable by this new result. The results of this work are useful to find estimates of discrete nonlinear systems atractors.
7

O Princípio de Invariância de LaSalle estendido aplicado ao estudo de coerência de geradores e à análise de estabilidade transitória multi-'swing'. / The extension of the LaSalle's Invariance Principle applied to generator coherency studies and multi-swing transient stability analysis.

Alberto, Luís Fernando Costa 07 April 2000 (has links)
As técnicas de análise de estabilidade transitória em sistemas elétricos de potência desenvolveram-se significativamente nas últimas duas décadas. Atualmente, o principal desafio dos pesquisadores é a obtenção de técnicas que sejam adequadasa análises em tempo real. Neste sentido, as idéias de Liapunov associadas ao Princípio de Invariância de LaSalle têm sido utilizadas para estimar a bacia de atraçãoo dos sistemas de potência. Embora esta filosofia seja bastante adequada a análises de estabilidade em tempo real, existem alguns obstáculos que impedem a aplicação da mesma à análise de sistemas reais. Dentre estes obstáculos poder-se-ia destacar a impossibilidade de utilização de modelos mais realísticos e a limitação da análise ao primeiro "swing". Em verdade, estes obstáculos estão intimamente relacionados com as limitações do Princípio de Invariância de LaSalle. Para superar estes problemas, propõe-se, neste trabalho, uma extensão deste princípio que é mais geral e portanto mais flexível do que o original. Aproveitando esta maior flexibilidade, duas aplicações em análise de estabilidade transitória são abordadas, ambas com o objetivo de reduzir os obstáculos anteriormente mencionados. Na primeira, propõe-se uma nova função energia para sistemas de potência com perdas nas linhas de transmissão. Mostra-se que esta é uma função de Liapunov no sentido mais geral da extensão do Princípio de Invariância de LaSalle, podendo portanto ser empregada para estudos de estabilidade. Na segunda, uma metodologia de análise de estabilidade multi-"swing" é proposta com base em uma análise de coerência de geradores.
8

Extensão do princípio de invariância de LaSalle para sistemas periódicos e sistemas fuzzy / Extension of the LaSalle\'s invariance principle for periodic systems and fuzzy systems

Wendhel Raffa Coimbra 26 February 2016 (has links)
O princípio de invariância de LaSalle estuda o comportamento assintótico das soluções sem conhecer as soluções das equações diferenciais.Para isto,utiliza uma função auxiliar V usualmente chamada de função de Lyapunov. Este trabalho apresenta um princípio de invariância fuzzy e sua versão global para a classe de sistemas dinâmicos fuzzy descrito, via extensão de Zadeh,por equações diferenciais autônomas com incertezas na condição inicial.Ainda, apresentamos um princípio de invariância uniforme, no qual não se exige que a derivada da função de Lyapunov seja sempre definida negativa, para a classe de sistemas dinâmicos não lineares não autônomos que são descritos por um conjunto de equações diferenciais ordinárias periódicas. Aplicações para as duas classes de sistemas foram desenvolvidas. / The LaSalle\'s invariance principle studies the asymptotic behavior of the solutions without requiring the knowledge of the solutions of differential equations. For this, it uses an auxiliary function V usually called Lyapunov function. This work proposes a fuzzy invariance principle and its global version for the class of fuzzy dynamic systems described, via Zadeh\'s extension, by autonomous ordinary differential equation with uncertainties in the initial condition. Moreover, we develop an uniform invariance principle, in which the derivative of the Lyapunov function is not required to be always negative definite, for the class of non autonomous non linear dynamical system described by a set of periodic ordinary differential equations. Applications for the two classes of systems are also developed.
9

Random iteration of isometries

Ådahl, Markus January 2004 (has links)
<p>This thesis consists of four papers, all concerning random iteration of isometries. The papers are:</p><p>I. Ambroladze A, Ådahl M, Random iteration of isometries in unbounded metric spaces. Nonlinearity 16 (2003) 1107-1117.</p><p>II. Ådahl M, Random iteration of isometries controlled by a Markov chain. Manuscript.</p><p>III. Ådahl M, Melbourne I, Nicol M, Random iteration of Euclidean isometries. Nonlinearity 16 (2003) 977-987.</p><p>IV. Johansson A, Ådahl M, Recurrence of a perturbed random walk and an iterated function system depending on a parameter. Manuscript.</p><p>In the first paper we consider an iterated function system consisting of isometries on an unbounded metric space. Under suitable conditions it is proved that the random orbit {<i>Z</i>n} <sup>∞</sup><sub>n=0</sub>, of the iterations corresponding to an initial point Z<sub>0</sub>, “escapes to infinity" in the sense that <i>P</i>(<i>Z</i>n Є <i>K)</i> → 0, as <i>n</i> → ∞ for every bounded set <i>K</i>. As an application we prove the corresponding result in the Euclidean and hyperbolic spaces under the condition that the isometries do not have a common fixed point.</p><p>In the second paper we let a Markov chain control the random orbit of an iterated function system of isometries on an unbounded metric space. We prove under necessary conditions that the random orbit \escapes to infinity" and we also give a simple geometric description of these conditions in the Euclidean and hyperbolic spaces. The results generalises the results of Paper I.</p><p>In the third paper we consider the statistical behaviour of the reversed random orbit corresponding to an iterated function system consisting of a finite number of Euclidean isometries of <b>R</b>n. We give a new proof of the central limit theorem and weak invariance principles, and we obtain the law of the iterated logarithm. Our results generalise immediately to Markov chains. Our proofs are based on dynamical systems theory rather than a purely probabilistic approach.</p><p>In the fourth paper we obtain a suficient condition for the recurrence of a perturbed (one-sided) random walk on the real line. We apply this result to the study of an iterated function system depending on a parameter and defined on the open unit disk in the complex plane. </p>
10

Random iteration of isometries

Ådahl, Markus January 2004 (has links)
This thesis consists of four papers, all concerning random iteration of isometries. The papers are: I. Ambroladze A, Ådahl M, Random iteration of isometries in unbounded metric spaces. Nonlinearity 16 (2003) 1107-1117. II. Ådahl M, Random iteration of isometries controlled by a Markov chain. Manuscript. III. Ådahl M, Melbourne I, Nicol M, Random iteration of Euclidean isometries. Nonlinearity 16 (2003) 977-987. IV. Johansson A, Ådahl M, Recurrence of a perturbed random walk and an iterated function system depending on a parameter. Manuscript. In the first paper we consider an iterated function system consisting of isometries on an unbounded metric space. Under suitable conditions it is proved that the random orbit {Zn} ∞n=0, of the iterations corresponding to an initial point Z0, “escapes to infinity" in the sense that P(Zn Є K) → 0, as n → ∞ for every bounded set K. As an application we prove the corresponding result in the Euclidean and hyperbolic spaces under the condition that the isometries do not have a common fixed point. In the second paper we let a Markov chain control the random orbit of an iterated function system of isometries on an unbounded metric space. We prove under necessary conditions that the random orbit \escapes to infinity" and we also give a simple geometric description of these conditions in the Euclidean and hyperbolic spaces. The results generalises the results of Paper I. In the third paper we consider the statistical behaviour of the reversed random orbit corresponding to an iterated function system consisting of a finite number of Euclidean isometries of <b>R</b>n. We give a new proof of the central limit theorem and weak invariance principles, and we obtain the law of the iterated logarithm. Our results generalise immediately to Markov chains. Our proofs are based on dynamical systems theory rather than a purely probabilistic approach. In the fourth paper we obtain a suficient condition for the recurrence of a perturbed (one-sided) random walk on the real line. We apply this result to the study of an iterated function system depending on a parameter and defined on the open unit disk in the complex plane.

Page generated in 0.0743 seconds