• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 21
  • 21
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Phase-space structure of resonance eigenfunctions for chaotic systems with escape

Clauß, Konstantin 16 June 2020 (has links)
Physical systems are usually not closed and insight about their internal structure is experimentally derived by scattering. This is efficiently described by resonance eigenfunctions of non-Hermitian quantum systems with a corresponding classical dynamics that allows for the escape of particles. For the phase-space distribution of resonance eigenfunctions in chaotic systems with partial and full escape we obtain a universal description of their semiclassical limit in terms of classical conditional invariant measures with the same decay rate. For partial escape, we introduce a family of conditionally invariant measures with arbitrary decay rates based on the hyperbolic dynamics and the natural measures of forward and backward dynamics. These measures explain the multifractal phase-space structure of resonance eigenfunctions and their dependence on the decay rate. Additionally, for the nontrivial limit of full escape we motivate the hypothesis that resonance eigenfunctions are described by conditionally invariant measures that are uniformly distributed on sets with the same temporal distance to the quantum resolved chaotic saddle. Overall we confirm quantum-to-classical correspondence for the phase-space densities, for their fractal dimensions, and by evaluating their Jensen–Shannon distance in a generic chaotic map with partial and full escape, respectively. / Typische physikalische Systeme sind nicht geschlossen, sodass ihre innere Struktur mit Hilfe von Streuexperimenten untersucht werden kann. Diese werden mit Hilfe einer nicht-Hermiteschen Quantendynamik und deren Resonanzeigenzuständen beschrieben. Die dabei zugrunde liegende klassische Dynamik berücksichtigt den Verlust von Teilchen. Für die semiklassische Phasenraumverteilung solcher Resonanzeigenzustände in chaotischen Systemen mit partieller und voller Öffnung entwickeln wir eine universelle Beschreibung mittels bedingt invarianter Maße gleicher Zerfallsrate. Für partiellen Zerfall stellen wir eine Familie bedingt invarianter Maße mit beliebiger Zerfallsrate vor, welche auf der hyperbolischen Dynamik und den natürlichen Maßen der vorwärts gerichteten und der invertierten Dynamik aufbauen. Diese Maße erklären die multifraktale Phasenraumstruktur der Resonanzzustände und deren Abhängigkeit von der Zerfallsrate. Darüber hinaus motivieren wir für den nicht trivialen Grenzfall voll geöffneter Systeme die Hypothese, dass Resonanzeigenzustände durch ein bedingt invariantes Maß beschrieben werden, welches gleichverteilt auf solchen Mengen ist, die den gleichen zeitlichen Abstand zum quantenunscharfen chaotischen Sattel haben. Insgesamt bestätigen wir die quantenklassische Korrespondenz für die Phasenraumdichten, deren fraktale Dimensionen und durch Auswertung ihres Jensen–Shannon Abstandes in einer generischen chaotischen Abbildung sowohl für partielle als auch für volle Öffnung.
12

Some models on the interface of probability and combinatorics : particle systems and maps. / Quelques modèles à l’interface des probabilités et de la combinatoire : processus de particules et cartes.

Fredes Carrasco, Luis 19 September 2019 (has links)
Cette thèse se compose de plusieurs travaux portant sur deux branches de la théorie des probabilités: processus de particules et cartes planaires aléatoires. Un premier travail concerne les aspects algébriques des mesures invariantes des processus de particules. Nous obtenons des conditions nécessaires et suffisantes sous lesquelles un processus de particules en temps continu avec espace d’états local discret possède une mesure invariante simple. Dans un deuxième travail nous étudions un modèle "biologique" de coexistence de 2 espèces en compétition sur un espace partagé, et soumis à des épidémies modélisées par un modèle probabiliste appelé "feux de forêts". Notre résultat principal montre que pour deux espèces, il existe des régions explicites de paramètres pour lesquelles une espèce domine ou les deux espèces coexistent. Il s’agit d’un des premiers modèles pour lesquels la coexistence d’espèces sur le long terme est prouvée. Les troisièmes et quatrièmes travaux. portent sur les cartes planaires décorées par des arbres. Dans le troisième nous présentons une bijection entre l’ensemble des cartes décorées par des arbres et le produit Cartésien entre l’ensemble des arbres planaires et l’ensemble de cartes à bord simple. Nous obtenons quelques formules de comptage et quelques outils pour l’étude de cartes aléatoires décorées par un arbre. Le quatrième travail montre que les triangulations et quadrangulations aléatoires uniformes avec f faces, bord simple de taille p et décorées par un arbre avec a arêtes, convergent en loi pour la topologie locale vers différentes limites, dépendant du comportement fini ou infini de la limite de f, p et a. / This thesis consists in several works exploring some models belonging to two branches of probability theory: interacting particle systems and random planar maps. A first work concerns algebraic aspects of interacting particle systems invariant measures. We obtain some necessary and sufficient conditions for some continuous time particle systems with discrete local state space, to have a simple invariant measure. In a second work we investigate the effect on survival and coexistence of introducing forest fire epidemics to a certain two-species spatial competition model. Our main results show that, for the two-type model, there are explicit parameter regions where either one species dominates or there is coexistence; contrary to the same model without forest fires, for which the fittest species alwaysdominates. The third and fourth works are related to tree-decorated planar maps. In the third work we present a bijection between the set of tree-decorated maps and the Cartesian product between the set of trees and the set of maps with a simple boundary. We obtain some counting results and some tools to study random decorated map models. In the fourth work we prove that uniform tree-decorated triangulations and quadrangulations with f faces, boundary of length p and decorated by a tree of size a converge weakly for the local topology to different limits, depending on the finite or infinite behavior of f, p and a.
13

Viana maps and limit distributions of sums of point measures

Schnellmann, Daniel 17 December 2009 (has links) (PDF)
This thesis consists of five articles mainly devoted to problems in dynamical systems and ergodic theory. We consider non-uniformly hyperbolic two dimensional systems and limit distributions of point measures which are absolutely continuous with respect to the Lebesgue measure. Let $f_{a_0}(x)=a_0-x^2$ be a quadratic map where the parameter $a_0\in(1,2)$ is chosen such that the critical point $0$ is pre-periodic (but not periodic). In Papers A and B we study skew-products $(\th,x)\mapsto F(\th,x)=(g(\th),f_{a_0}(x)+\al s(\th))$, $(\th,x)\in S^1\times\real$. The functions $g:S^1\to S^1$ and $s:S^1\to[-1,1]$ are the base dynamics and the coupling functions, respectively, and $\al$ is a small, positive constant. Such quadratic skew-products are also called Viana maps. In Papers A and B we show for several choices of the base dynamics and the coupling function that the map $F$ has two positive Lyapunov exponents and for some cases we further show that $F$ admits also an absolutely continuous invariant probability measure. In Paper C we consider certain Bernoulli convolutions. By showing that a specific transversality property is satisfied, we deduce absolute continuity of the to these Bernoulli convolutions associated distributions. In Papers D and E we consider sequences of real numbers in the unit interval and study how they are distributed. The sequences in Paper D are given by the forward iterations of a point $x\in[0,1]$ under a piecewise expanding map $T_a:[0,1]\to[0,1]$ depending on a parameter $a$ contained in an interval $I$. Under the assumption that each $T_a$ admits a unique absolutely continuous invariant probability measure $\mu_a$ and that some technical conditions are satisfied, we show that the distribution of the forward orbit $T_a^j(x)$, $j\ge1$, is described by the distribution $\mu_a$ for Lebesgue almost every parameter $a\in I$. In Paper E we apply the ideas in Paper D to certain sequences which are equidistributed in the unit interval and give a geometrical proof of an old result by Koksma.
14

Viana maps and limit distributions of sums of point measures

Schnellmann, Daniel January 2009 (has links)
No description available.
15

Cadeias de Markov e o Jogo Monopoly

Souza Junior, Fernando Luiz de January 2016 (has links)
Orientador: Prof. Dr. Rafael de Mattos Grisi / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional, 2016. / Neste trabalho analisamos uma versão simplificada do jogo Monopoly utilizando um modelo de Cadeia de Markov com parâmetro de tempo discreto. No primeiro capítulo discorremos sobre a Teoria Clássica das Probabilidades, trazendo os resultados mais importantes para este estudo, precedida por uma breve introdução acerca das ideias sobre o acaso ao longo da história da humanidade e os principais pensadores envolvidos no desenvolvimento dessa Teoria. No segundo capítulo fazemos uma introdução histórica aos processos estocásticos e às Cadeias de Markov; em seguida, explicamos os conceitos fundamentais sobre Cadeias de Markov, colocando alguns exemplos e por fim discutindo a ergodicidade de uma Cadeia de Markov. No terceiro capítulo, após uma breve explicação sobre o surgimento e posterior evolução do jogo Monopoly ao longo do século XX, analisamos a dinâmica do jogo pelo modelo de uma Cadeia de Markov, utilizando como objeto de estudo uma versão mais simples do jogo em questão. / In this work we analyze a simplified version of the Monopoly game using a Markov chain model with discrete time parameter. In the first chapter we discuss on the Classical Theory of Probability, bringing the most important results for this study, preceded by a brief introduction about the ideas of chance throughout the history of mankind and leading thinkers involved in the development of this theory. In the second chapter we make a historical introduction to stochastic processes and Markov chains; then we explain the fundamental concepts of Markov Chains, putting some examples and finally discussing the ergodicity of a Markov chain. In the third chapter, after a brief explanation of the emergence and subsequent evolution of the Monopoly game throughout the twentieth century, we analyze the dynamics of the game by the model of a Markov chain, using as an object of study a simpler version of the game in question.
16

Invariant measures on polynomial quadratic Julia sets with no interior / Invariant measures on polynomial quadratic Julia sets with no interior

Poirier Schmitz, Alfredo 25 September 2017 (has links)
We characterize invariant measures for quadratic polynomial Julia sets with no interior. We prove that besides the harmonic measure —the only one that is even and invariant—, all others are generated by a suitable odd measure. / En este artículo caracterizamos medidas invariantes sobre conjuntos de Julia sin interior asociados con polinomios cuadráticos.  Probamos que más allá de la medida armónica —la única par e invariante—, el resto son generadas por su parte impar.
17

Solução da conjectura de Weiss estocástica para semigrupos analíticos / Solution of the stochastic Weiss conjecture for bounded analytic semigroups

Abreu Júnior, Jamil Gomes de, 1981- 05 February 2013 (has links)
Orientadores: Pedro José Catuogno, Johannes Michael Antonius Maria van Neerven / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-22T15:55:30Z (GMT). No. of bitstreams: 1 AbreuJunior_JamilGomesde_D.pdf: 1681574 bytes, checksum: 280ab5f7ecf646a3ab11f04ca34664e3 (MD5) Previous issue date: 2013 / Resumo: Nesta tese tratamos o problema de caracterizar a existência de medida invariante para equações de evolução estocásticas lineares com ruído aditivo em termos do resolvente associado ao gerador da equação. Este problema foi proposto recentemente na literatura como uma versão estocástica da célebre conjectura de Weiss em teoria de controle para sistemas lineares, que consiste em relacionar admissibilidade de operadores de controle a certas estimativas envolvendo o resolvente do gerador infinitesimal. No contexto estocástico, e no caso em que o gerador da equação é analítico e admite um cálculo funcional do tipo Dunford-Schwartz num espaço de Banach com a propriedade de Pisier, nosso resultado principal consiste de condições analítico-funcionais necessárias e suficientes para existência de medida invariante para o problema de Cauchy estocástico. Em particular, mostramos que existência de medida invariante _e equivalente _a convergência em probabilidade de certa série Gaussiana cujos termos são os resolventes avaliados nos pontos diádicos positivos da reta real, que consideramos como sendo a condição de Weiss estocástica. Há fortes razões para esperar que, _a semelhança do que ocorreu com a conjectura de Weiss clássica, este problema atraia considerável atenção da comunidade acadêmica num futuro próximo / Abstract: In this thesis we consider the problem of characterizing the existence of invariant measure for linear stochastic evolution equations with additive noise in terms of the resolvent operator associated to the generator of the equation. This problem was recently proposed in the literature as a stochastic version of the celebrated Weiss conjecture in linear systems theory, which relates admissibility of control operators to certain estimates involving the resolvent of the infinitesimal generator. In the stochastic setting and when the generator is analytic and admits a bounded functional calculus in a Banach space with Pisier property, our main result consists of necessary and sufficient functional analytic conditions for the existence of an invariant measure for the stochastic Cauchy problem. In particular, we show that existence of invariant measure is equivalent to convergence in probability of a certain Gaussian series whose terms are the resolvents evaluated at the positive dyadic points of the real line, which we consider as being the stochastic Weiss condition. There are strong reasons to expect that, similarly to what happened to the classical Weiss conjecture, this work will attract considerable attention of the academic community in the near future / Doutorado / Matematica / Doutor em Matemática
18

Phase-Space Localization of Chaotic Resonance States due to Partial Transport Barriers

Körber, Martin Julius 10 February 2017 (has links) (PDF)
Classical partial transport barriers govern both classical and quantum dynamics of generic Hamiltonian systems. Chaotic eigenstates of quantum systems are known to localize on either side of a partial barrier if the flux connecting the two sides is not resolved by means of Heisenberg's uncertainty. Surprisingly, in open systems, in which orbits can escape, chaotic resonance states exhibit such a localization even if the flux across the partial barrier is quantum mechanically resolved. We explain this using the concept of conditionally invariant measures by introducing a new quantum mechanically relevant class of such fractal measures. We numerically find quantum-to-classical correspondence for localization transitions depending on the openness of the system and on the decay rate of resonance states. Moreover, we show that the number of long-lived chaotic resonance states that localize on one particular side of the partial barrier is described by an individual fractal Weyl law. For a generic phase space, this implies a hierarchy of fractal Weyl laws, one for each region of the hierarchical decomposition of phase space.
19

Existência de medidas invariantes para aplicações no intervalo com presença de pontos críticos e singularidades

Montoya, Jorge Luis Abanto 20 May 2016 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-07-28T20:14:59Z No. of bitstreams: 1 jorgeluisabantomontoya.pdf: 600922 bytes, checksum: 4b3e153d0e21453a8c9529785f8de3be (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-07-29T11:42:38Z (GMT) No. of bitstreams: 1 jorgeluisabantomontoya.pdf: 600922 bytes, checksum: 4b3e153d0e21453a8c9529785f8de3be (MD5) / Made available in DSpace on 2016-07-29T11:42:38Z (GMT). No. of bitstreams: 1 jorgeluisabantomontoya.pdf: 600922 bytes, checksum: 4b3e153d0e21453a8c9529785f8de3be (MD5) Previous issue date: 2016-05-20 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Provaremos a existência de medidas de probabilidade invariantes absolutamente contínuas com respeito à medida de Lebesgue. Aqui trabalhamos com uma classe de funções que denotamos por F, esta classe consiste de aplicações no intervalo f : M ! M, que possuem pontos críticos e singularidades mais outras propriedades. É preciso mencionar que uma das propriedades é a condição de somabilidade ao longo da órbita crítica que vai ajudar a ter resultados importantes para nosso trabalho. O resultado principal diz que, para cada f 2 F existe uma medida de probabilidade invariante absolutamente contínua. Para conseguir este resultado, provaremos um teorema auxiliar que trata da existência de uma partição enumerável I de intervalos abertos de M, de uma aplicação que chamamos tempo induzido : M ! N que é constante nos elementos da partição I, tal que a aplicação ˆ f : M ! M definida por ˆ f = f que chamamos aplicação induzida, satisfaz três propriedades importantes que são, expansão, variação somável e tempo induzido somável. Por isso ao longo do trabalho vamos concentrar em provar essas três propriedades. O ponto importante é que as duas primeiras propriedades junto com o teorema A garantem a existência de uma medida de probabilidade absolutamente contínua para ˆ f, finalmente utilizando a terceira propriedade junto com a proposição A, obtemos a existência de uma medida de probabilidade absolutamente contínua para nossa f. / We prove the existence of invariant probability measures absolutely continuous with respect to Lebesgue measure. Here we work with a class of maps that we denote by F, this class consists of interval maps f : M ! M, having critical points and singularities more other properties. I must mention that one of the properties is the condition of summability along the critical orbit which will help to have important results for our work. The main result says, for each f 2 F there is a probability measure invariant absolutely continuous. To achieve this result, we prove an auxiliary theorem that is the existence of a countable partition I of open intervals of M, an map that called induced time : M ! N that is constant on the elements of the partition I, such that the map ˆ f : M ! M defined by ˆ f = f we call induced map, satisfies three important properties that are, expanding, summable variation and summable induced time. So throughout the work we focus on evidence these three properties. The important point is that the first two properties together with theorem A ensures the existence of a measure absolutely continuous probability ˆ f, finally using the third property together with proposition A, we get the existence of an absolutely continuous probability measure for our f.
20

Phase-Space Localization of Chaotic Resonance States due to Partial Transport Barriers

Körber, Martin Julius 27 January 2017 (has links)
Classical partial transport barriers govern both classical and quantum dynamics of generic Hamiltonian systems. Chaotic eigenstates of quantum systems are known to localize on either side of a partial barrier if the flux connecting the two sides is not resolved by means of Heisenberg's uncertainty. Surprisingly, in open systems, in which orbits can escape, chaotic resonance states exhibit such a localization even if the flux across the partial barrier is quantum mechanically resolved. We explain this using the concept of conditionally invariant measures by introducing a new quantum mechanically relevant class of such fractal measures. We numerically find quantum-to-classical correspondence for localization transitions depending on the openness of the system and on the decay rate of resonance states. Moreover, we show that the number of long-lived chaotic resonance states that localize on one particular side of the partial barrier is described by an individual fractal Weyl law. For a generic phase space, this implies a hierarchy of fractal Weyl laws, one for each region of the hierarchical decomposition of phase space.

Page generated in 0.0562 seconds