Spelling suggestions: "subject:"inverses mendel"" "subject:"inverses hendel""
1 |
Realisierung einer prototypischen Hardwarelösung für ein inverses Pendel / FPGA-only Based Closed-loop Control for a Very Compact Inverted Pendulum with Kalman FilterBerger, Benjamin 17 February 2011 (has links) (PDF)
Ziel der Arbeit ist die anschauliche Demonstration der Leistungsfähigkeit von Hardware- Systemen zur Regelung instabiler Systeme am Beispiel des Inversen Pendels. Dabei handelt es sich um das Balancieren eines Stabes, einem Standard-Problem der Regelungstechnik. Es wird die Konzeption und Implementierung einer Hardware-Regelung in einem FPGA-Prototypenboard zur Realisierung dieser Aufgabe beschrieben. Die Regelung basiert mit LQR-Entwurf und Kalman-Filter auf klassischen Methoden der Regelungstechnik. Zur Demonstration der Regelung wurde ein mechanischer Aufbau vorgenommen, an dem die Funktionsfähigkeit des Inversen Pendels praktisch gezeigt wurde.
|
2 |
Realisierung einer prototypischen Hardwarelösung für ein inverses Pendel: FPGA basierte Regelung eines kompakten Inversen Pendels mit Kalman FilterBerger, Benjamin 28 September 2010 (has links)
Ziel der Arbeit ist die anschauliche Demonstration der Leistungsfähigkeit von Hardware- Systemen zur Regelung instabiler Systeme am Beispiel des Inversen Pendels. Dabei handelt es sich um das Balancieren eines Stabes, einem Standard-Problem der Regelungstechnik. Es wird die Konzeption und Implementierung einer Hardware-Regelung in einem FPGA-Prototypenboard zur Realisierung dieser Aufgabe beschrieben. Die Regelung basiert mit LQR-Entwurf und Kalman-Filter auf klassischen Methoden der Regelungstechnik. Zur Demonstration der Regelung wurde ein mechanischer Aufbau vorgenommen, an dem die Funktionsfähigkeit des Inversen Pendels praktisch gezeigt wurde.:1 Einleitung 11
1.1 Motivation.................................... 11
1.2 Analyse der Aufgabenstellung ......................... 11
1.3 Gliederung der Arbeit ............................. 12
2 Grundlagen 13
2.1 Referenzanwendung Inverses Pendel...................... 13
2.2 Aufbau des Regelsystems............................ 15
2.3 Verfahren zum Reglerentwurf ......................... 19
2.4 Verfahren zur Zustandsschätzung ....................... 22
2.5 Sensorik..................................... 26
2.6 Antrieb ..................................... 28
3 Inverse Pendel im Vergleich 33
3.1 Bauformen.................................... 33
3.2 Realisierungsbeispiele.............................. 34
3.3 Fazit der Recherche............................... 39
4 Elektromechanischer Aufbau 41
4.1 Mechanik .................................... 42
4.2 Sensorik..................................... 42
4.3 Antrieb ..................................... 44
4.4 FPGA-Board .................................. 47
5 Modellbildung 48
5.1 Herleitung der Systemgleichungen....................... 48
5.2 Anpassung an den Schrittmotor ........................ 51
5.3 Linearisiertes Modell im Zustandsraum.................... 51
5.4 Analyse der Modelleigenschaften........................ 52
6 Reglerentwurf 56
6.1 Einstellung des LQ-Reglers........................... 56
6.2 Einstellung des Kalman-Filters ........................ 57
6.3 Aufschwing- und Fangalgorithmus....................... 58
6.4 Simulation.................................... 60
6.5 Konsequenzen für die Realisierung....................... 63
7 Implementierung 65
7.1 Besonderheiten des Hardware-Entwurfs.................... 65
7.2 Systempartitionierung und Entwurfsstrategie . . . . . . . . . . . . . . . . . 66
7.3 Teilkomponenten ................................ 67
7.4 Modifizierung des Kalman-Filters ....................... 72
7.5 Probleme .................................... 78
8 Schluss 80
8.1 Zusammenfassung................................ 80
8.2 Ergebnisse.................................... 80
8.3 Ausblick..................................... 82
Literaturverzeichnis 84
A Details zum Projekt 87
A.1 Kurzdokumentation .............................. 87
A.2 Datei- und Verzeichnisstruktur......................... 88
A.3 Simulationsresultate .............................. 89
|
3 |
Sensorgeführte Bewegungen stationärer Roboter / Sensor Guided Motions of Stationary RobotsWinkler, Alexander 22 March 2016 (has links) (PDF)
Den Kern der vorliegenden Arbeit bilden sog. sensorgeführte Roboterbewegungen, d. h. die Nutzung von Informationen externer Sensoren zur Regelung des Roboters. Da gängige Industrierobotersysteme üblicherweise positionsgeregelt sind und seitens der Robotersteuerung lediglich der Zugriff zu den Sollwerten der Lageregelkreise erlaubt wird, kann auch der Regelkreis der sensorgeführten Roboterbewegung nur über den Lageregelkreis geschlossen werden. Aus diesem Grunde werden hier nur positionsbasierte Regelungsansätze verfolgt.
Die Kraft-/ Momentregelung gilt als eine der wichtigsten Varianten sensorgeführter Roboterbewegungen. Dementsprechend widmet sich auch ein großer Teil dieser Arbeit dem Thema, mit dem Ziel durch innovative und übersichtliche Regelalgorithmen die Akzeptanz der Kraft-/ Momentregelung in industriellen Produktionsprozessen zu erhöhen. Beginnend mit der eindimensionalen Kraftregelung führt der Weg dabei über Konzepte zur Konturenverfolgung und kraft-/ momentgeregelten Montageaufgaben hin zur Kooperation von Robotern.
In einem weiteren Teil wird ein Konzept zur Kollisionsvermeidung zwischen Robotern und Hindernissen präsentiert. Es basiert auf dem Ansatz der virtuellen Potential- bzw. Kraftfelder. Dabei ruft das künstliche Feld eine Bewegung des Roboters hervor, die vom Hindernis weg führt. Um das Feld zu erzeugen, wird die Methode der künstlichen Punktladungen entwickelt. Diese werden auf der Oberfläche eines Hindernisses platziert und generieren dann das virtuelle Kraftfeld. Die Platzierung kann z. B. mithilfe der CAD-Daten des Hindernisses erfolgen. Bei bewegten Objekten müssen alle Ladungspositionen ständig aktualisiert werden.
Für Lehr- und Präsentationszwecke ist das sog. inverse Pendel eine oft genutzte Regelstrecke. Sein Aufrichten und Stabilisieren ist auch mit Hilfe eines Industrieroboters möglich. Dazu beschäftigt sich ein Kapitel dieser Arbeit mit Fragen zur Modellbildung der Kombination inverses Pendel und Industrieroboter und mit Regelungskonzepten für das Aufschwingen und Balancieren. Letztendlichen wird in diesem Zusammenhang noch ein Visual-Servoing System präsentiert, dass den Neigungswinkel des Pendels mit einer Kamera bestimmt.
Alle hier vorgestellten Konzepte und Algorithmen werden Anhand von praktischen Experimenten verifiziert. / This work deals with so-called sensor guided robot motions, which means using the data of external sensors to control the robot. The control loop of the sensor guided robot motion can be only closed around the position control loop, because industrial robot systems usually work position controlled and only access to the desired positions is enabled. For this reason here only position based control approaches are regarded.
Force/torque control is a very important type of sensor guided robot motions. According to this, a good portion of this work deals with the subject of force/torque control. Thus, the acceptance of force/torque control in industrial production processes should be increased, by using innovative and clear control algorithms. For this purpose force control in one degree of freedom, contour-following, force/torque controlled assembling tasks and the cooperation between robots are discussed here in different chapters.
Thereafter, a concept to collision avoidance between robots and obstacles is presented. It uses the approach of virtual potential/force fields. In this case the artificial field induces a robot motion away from the obstacle. The method of artificial charges is developed to generate this field. For this purpose virtual charges are placed on the surface of the obstacles. Placing of the charges can be performed using e.g. CAD data of the obstacles. Having moving obstacles charge positions must be updated continuously.
The inverted pendulum is commonly used teaching students in control theory. The swinging up and the stabilization of the pendulum also can be performed by an industrial robot. One chapter of this work deals with modelling of the robot mounted inverted pendulum and control algorithms for its swinging up and its stabilization. Finally, in combination with the inverted pendulum a visual-servoing system is presented, which measures the pendulum inclination angle by camera.
All concepts introduced in this work are verified by practical experiments.
|
4 |
Sensorgeführte Bewegungen stationärer RoboterWinkler, Alexander 17 June 2015 (has links)
Den Kern der vorliegenden Arbeit bilden sog. sensorgeführte Roboterbewegungen, d. h. die Nutzung von Informationen externer Sensoren zur Regelung des Roboters. Da gängige Industrierobotersysteme üblicherweise positionsgeregelt sind und seitens der Robotersteuerung lediglich der Zugriff zu den Sollwerten der Lageregelkreise erlaubt wird, kann auch der Regelkreis der sensorgeführten Roboterbewegung nur über den Lageregelkreis geschlossen werden. Aus diesem Grunde werden hier nur positionsbasierte Regelungsansätze verfolgt.
Die Kraft-/ Momentregelung gilt als eine der wichtigsten Varianten sensorgeführter Roboterbewegungen. Dementsprechend widmet sich auch ein großer Teil dieser Arbeit dem Thema, mit dem Ziel durch innovative und übersichtliche Regelalgorithmen die Akzeptanz der Kraft-/ Momentregelung in industriellen Produktionsprozessen zu erhöhen. Beginnend mit der eindimensionalen Kraftregelung führt der Weg dabei über Konzepte zur Konturenverfolgung und kraft-/ momentgeregelten Montageaufgaben hin zur Kooperation von Robotern.
In einem weiteren Teil wird ein Konzept zur Kollisionsvermeidung zwischen Robotern und Hindernissen präsentiert. Es basiert auf dem Ansatz der virtuellen Potential- bzw. Kraftfelder. Dabei ruft das künstliche Feld eine Bewegung des Roboters hervor, die vom Hindernis weg führt. Um das Feld zu erzeugen, wird die Methode der künstlichen Punktladungen entwickelt. Diese werden auf der Oberfläche eines Hindernisses platziert und generieren dann das virtuelle Kraftfeld. Die Platzierung kann z. B. mithilfe der CAD-Daten des Hindernisses erfolgen. Bei bewegten Objekten müssen alle Ladungspositionen ständig aktualisiert werden.
Für Lehr- und Präsentationszwecke ist das sog. inverse Pendel eine oft genutzte Regelstrecke. Sein Aufrichten und Stabilisieren ist auch mit Hilfe eines Industrieroboters möglich. Dazu beschäftigt sich ein Kapitel dieser Arbeit mit Fragen zur Modellbildung der Kombination inverses Pendel und Industrieroboter und mit Regelungskonzepten für das Aufschwingen und Balancieren. Letztendlichen wird in diesem Zusammenhang noch ein Visual-Servoing System präsentiert, dass den Neigungswinkel des Pendels mit einer Kamera bestimmt.
Alle hier vorgestellten Konzepte und Algorithmen werden Anhand von praktischen Experimenten verifiziert. / This work deals with so-called sensor guided robot motions, which means using the data of external sensors to control the robot. The control loop of the sensor guided robot motion can be only closed around the position control loop, because industrial robot systems usually work position controlled and only access to the desired positions is enabled. For this reason here only position based control approaches are regarded.
Force/torque control is a very important type of sensor guided robot motions. According to this, a good portion of this work deals with the subject of force/torque control. Thus, the acceptance of force/torque control in industrial production processes should be increased, by using innovative and clear control algorithms. For this purpose force control in one degree of freedom, contour-following, force/torque controlled assembling tasks and the cooperation between robots are discussed here in different chapters.
Thereafter, a concept to collision avoidance between robots and obstacles is presented. It uses the approach of virtual potential/force fields. In this case the artificial field induces a robot motion away from the obstacle. The method of artificial charges is developed to generate this field. For this purpose virtual charges are placed on the surface of the obstacles. Placing of the charges can be performed using e.g. CAD data of the obstacles. Having moving obstacles charge positions must be updated continuously.
The inverted pendulum is commonly used teaching students in control theory. The swinging up and the stabilization of the pendulum also can be performed by an industrial robot. One chapter of this work deals with modelling of the robot mounted inverted pendulum and control algorithms for its swinging up and its stabilization. Finally, in combination with the inverted pendulum a visual-servoing system is presented, which measures the pendulum inclination angle by camera.
All concepts introduced in this work are verified by practical experiments.
|
Page generated in 0.0541 seconds