Spelling suggestions: "subject:"oon channels"" "subject:"oon ehannels""
261 |
Isolamento e caracterização estrutural e funcional da Ts15, uma nova neurotoxina da peçonha do escorpião Tityus serrulatus / Isolation and structural and functional characterization of Ts15, a new neurotoxin from the venom of the scorpion Tityus serrulatusCologna, Camila Takeno 21 July 2010 (has links)
Os escorpiões são um dos grupos de animais mais antigos da Terra. Eles são artrópodes e pertecem a classe Arachinida e Ordem Scorpionida. A família Buthidae compreende as espécies responsáveis pelos acidentes graves em humanos, incluindo a espécie Tityus serrulatus, o maior responsável por esses acidentes no Brasil. A peçonha do T. serrulatus contém diversas neurotoxinas que agem especificamente em canais para sódio, potássio e cálcio da membrana plasmática de células excitáveis, causando massiva liberação de neurotransmissores.As toxinas escorpiônicas podem ser usadas como ferramentas nos estudos de estrutura e função desses canais iônicos sensíveis a voltagem e também no estudo de liberação e captação de neurotransmissores. As toxinas escôrpionicas específicas para canais para sódio sensíveis a voltagem são as principais responsáveis pelos efeitos do envenenamento por estes artrópodes e podem ser classificadas em duas classes: toxinas e . As -toxinas retardam a inativação desses canais induzindo assim um prolongamento na fase de repolarização do potencial de ação. As - toxinas alteram a dependência de voltagem de ativação dos canais para sódio para potenciais mais negativos provocando potenciais de ação espontâneos e repetitivos. As toxinas específicas para canais para potássio (KTx) são geralmente peptídeos pequenos e de caráter básico, formados por 23-43 aminoácidos estabilizados por 3-4 pontes dissulfeto. As KTx são classificadas em 4 subfamílias:, , , . Neste trabalho, uma nova neurotoxina do escorpião T. serrulatus foi isolada e caracterizada bioquímica e funcionalmente. A toxina foi testada em ampla variedade de canais incluindo 5 subtipos de canais para sódio (Nav1.4; Nav1.5; Nav1.6; Nav1.8 e DmNav1) e 12 diferentes tipos de canais para potássio (Kv1.1 a Kv1.6; Kv2.1; Kv3.1; Kv4.2; Kv4.3; Shaker IR e hERG). A peçonha bruta solúvel foi fracionada em cromatografia de troca iônica em coluna CM-Celulose-52 (2,5 cm x 63 cm), previamente equilibrada e eluída com tampão NH4HCO3 (pH 7,8). Essa primeira etapa cromatográfica permitiu a separação de 13 frações nomeadas de I XIII. A fração X foi submetida à cromatografia de fase reversa em sistema de cromatografia líquida de alta eficiência em que a toxina pura Ts15 pode ser obtida. Seu sequenciamento amino-terminal demonstrou que esse peptídeo possui 36 resíduos de aminoácidos estabilizados por 3 pontes dissulfeto. A massa molecular obtida por espectrometria de massa foi de 3956 e o pI predito pelo programa ProtParam foi de 8,86, no entanto, o pI determinado por focalização isolelétrica foi maior que 9,3. Os experimentos de eletrofisiologia utilizando as técnicas patch clamp e two microelectrode voltage clamp mostraram que a toxina Ts15 bloqueia preferencialmente os subtipos de canais para potássio Kv1.2 e Kv1.3 com IC50 de 196 ± 25 nM e 508± 67 nM respectivamente. Os ensaios de captação de neurotransmissores em sinaptosomas de cérebro de rato foram realizados adicionando 3H-GABA e 3H-Glu na presença e ausência de diferentes concentrações da toxina Ts15. Não foram observados efeitos nos canais para sódio em todas as concentrações testadas assim como na captação do GABA. Porém, foi observado aumento significante na captação do glutamato em todas as concentrações testadas, provavelmente como resultado de efeito secundário da ação da Ts15 em canais para potássio sensível a voltagem. Em conclusão, a Ts15 pode ser considerada um autêntico novo tipo de toxina escorpiônica, com afinidade para canais para potássio Kv1.2 e Kv1.3 e capaz de aumentar a captação de glutamato. Essa toxina é o único membro da nova subfamília -Ktx21 e portanto nomeada -Ktx21.1 / Scorpions are one of the most ancient groups of animals on earth. They are arthropods and belong to the class Arachinida and Order Scorpionida. The Buthidae family comprises the species that are really dangerous for human, including Tityus serrulatus that is responsible for most severe accidents in Brazil. T. serrulatus venom contains several neurotoxins that specifically act on sodium, potassium or calcium channels in excitable membranes, causing a massive release of neurotransmitters and leading to the stimulation of the autonomic nervous system. Since ion channels play important roles in many physiological processes, scorpion toxins have been used as tools for studies of the neurophysiological mechanisms involving voltage-gated ion channels and neurotransmitter release/uptake. Voltage-gated Na+ channel (Nav channel) toxins are mainly responsible of the harmful effects of scorpion venom and can be classified into two classes: and -neurotoxins. The -toxins retard Nav channel inactivation and induce a prolongation of the repolarization phase of the action potential. The -toxins shift the voltage dependence of Nav channel activation to more negative potentials that result in an increased tendency of the cell to fire spontaneously and repetitively. Voltage-gated potassium channel toxins (KTxs) are basic short chain peptides comprising 23-43 amino acid residues that can be cross-linked by 3 or 4 disulfide bridges. KTxs are classified into four large families: , , and . These peptides display varying selectivity and affinity for different Kv channel subtypes. In this work, a novel toxin from the T. serrulatus venom was isolated, biochemistry and pharmacologically characterized using a wide electrophysiological screening on 5 different subtypes of Nav channels (Nav1.4; Nav1.5; Nav1.6; Nav1.8 and DmNav1) and 12 different subtypes of Kv channels (Kv1.1 - Kv1.6; Kv2.1; Kv3.1; Kv4.2; Kv4.3; Shaker IR and hERG). The crude soluble T. serrulatus venom was fractionated by ion exchange chromatography on a CM-cellulose-52 column (2.5 cm x 63.0 cm), which was equilibrated and eluted with NH4HCO3 buffer (pH 7.8). This chromatography allowed the separation of 13 fractions which were named I to XIII. Fraction X was submitted to a reverse-phase C18 (0.46 cm x 25 cm) high performance liquid chromatography (RP-HPLC) and the pure toxin, Ts15, could be obtained. The amino acid sequence of this novel peptide showed that it contains 36 amino acids and is cross-linked by 3 disulfide bridges. The molecular mass of Ts15 (3956) was obtained by electrospray (ESI) triple-quadrupole mass spectrometry and its pI value (8,86) was predicted by ProtParam program. However, the pI determined by isoeletric focusing was greater than 9,3. Electrophysiological experiments using patch clamp and the two electrode voltage clamp technique, showed that Ts15 preferentially blocks Kv1.2 and Kv1.3 channels with IC50 value of 196 ± 25 and 508 ± 67 nM, respectively. Uptake assays were performed by adding 3H-GABA and 3H-Glu, in the absence (controls) or presence of different concentrations of Ts15, on isolated rat brain synaptosomes. No effect on Nav channels was observed, in all tested concentrations, as well as for GABA uptake. However, Ts15 induced a significant increase of the glutamate uptake, probably as a secondary effect of its action on Kv channels. In conclusion, Ts15 can be considered a bonafide novel type of scorpion toxin that presents high affinity by Kv1.2 and Kv1.3 channels and was able to increase the glutamate uptake. It is the unique member of the new -Ktx21 subfamily and therefore was named -Ktx21.1
|
262 |
Frequency preference and reliability of signal integrationSchreiber, Susanne 21 July 2004 (has links)
Die Eigenschaften einzelner Nervenzellen sind von grundlegender Bedeutung für die Verarbeitung von Informationen im Nervensystem. Neuronen antworten auf Eingangsreize durch Veränderung der elektrischen Spannung über die Zellmembran. Die Spannungsantwort wird dabei durch die Dynamik der Ionenkanäle in der Zellmembran bestimmt. In dieser Arbeit untersuche ich anhand von leitfähigkeits-basierten Modellneuronen den Einfluss von Ionenkanälen auf zwei Aspekte der Signalverarbeitung: die Frequenz-Selektivität sowie die Zuverlässigkeit und zeitliche Präzision von Aktionspotentialen. Zunächst werden die zell-intrinsischen Mechanismen identifiziert, welche the Frequenz-Selektivität und die Zuverlässigkeit bestimmen. Weiterhin wird untersucht, wie Ionenkanäle diese Mechanismen modulieren können, um die Integration von Signalen zu optimieren. Im ersten Teil der Arbeit wird demonstriert, dass der Mechanismus der unterschwelligen Resonanz, so wie er bisher für periodische Signale beobachtet wurde, auch auf nicht-periodische Signale anwendbar ist und sich ebenfalls in den Feuerraten niederschlägt. Im zweiten Teil wird gezeigt, dass zeitliche Präzision und Zuverlässigkeit von Aktionspotentialen mit der Stimulusfrequenz variieren und dass, in Abhängigkeit davon, ob das Stimulusmittel über- oder unterhalb der Feuerschwelle liegt, zwei Stimulusregime unterschieden werden müssen. In beiden Regimen existiert eine bevorzugte Stimulusfrequenz, welche durch die Gesamtleitfähigkeit und die Dynamik spezifischer Ionenkanäle moduliert werden kann. Im dritten Teil wird belegt, dass Ionenkanäle die Zuverlässigkeit auch direkt über eine Veränderung der Sensitivität einer Zelle gegenüber neuronalem Rauschen bestimmen können. Die Ergebnisse der Arbeit lassen auf eine wichtige Rolle der dynamischen Regulierung der Ionenkanäle für die Frequenz-Selektivität und die zeitliche Präzision und Zuverlässigkeit der Spannungsantworten schließen. / The properties of individual neurons are of fundamental importance for the processing of information in the nervous system. The generation of voltage responses to input signals, in particular, depends on the properties of ion channels in the cell membrane. Within this thesis, I employ conductance-based model neurons to investigate the effect of ionic conductances and their dynamics on two aspects of signal processing: frequency-selectivity and temporal precision and reliability of spikes. First, the cell-intrinsic mechanisms that determine frequency selectivity and spike timing reliability are identified on the basis of conductance-based model neurons. Second, it is analyzed how ionic conductances can serve to modulate these mechanisms in order to optimize signal integration. In the first part, the frequency selectivity of subthreshold response amplitudes previously observed for periodic stimuli is proven to extend to nonperiodic stimuli and to translate into firing rates. In the second part, it is demonstrated that spike timing reliability is frequency-selective and that two different stimulus regimes have to be distinguished, depending on whether the stimulus mean is below or above threshold. In both cases, resonance effects determine the most reliable stimulus frequency. It is shown that this frequency preference can be modulated by the peak conductance and dynamics of specific ion channels. In the third part, evidence is provided that ionic conductances determine spike timing reliability beyond changes in the preferred frequency. It is demonstrated that ionic conductances also exert a direct influence on the sensitivity of the timing of spikes to neuronal noise. The findings suggest an important role for dynamic neuromodulation of ion channels with regard to frequency selectivity and spike timing reliability.
|
263 |
Resonanzverhalten und Netzwerkoszillationen in der hippokampalen Formation der Ratte in vitroBoehlen, Anne 06 September 2010 (has links)
Rhythmische neuronale Aktivität spielt vermutlich eine wichtige Rolle in der Informationsverarbeitung im zentralen Nervensystem. Oszillationen neuronaler Netze sind heterogen, von der Hirnregion und ihrer Funktion abhängig und werden entsprechend ihrer Frequenz eingeteilt. Für ihre Entstehung sind über die Verschaltung der Neuronen und der synaptischen Übertragung hinaus insbesondere die Erregbarkeit und Oszillationseigenschaften einzelner Neurone von Bedeutung. Bestimmte Zellen der hippokampalen Formation wie zum Beispiel Sternzellen (SC) der Schicht II des Entorhinalkortex zeigen oszillatorische Aktivität und antworten verstärkt auf Stimuli einer bestimmten Frequenz – sie sind resonant. Beide Phänomene werden auf spezifische spannungsabhängige Leitfähigkeiten in der Membran zurückgeführt. Es stellte sich heraus, dass die Resonanzfrequenz von SCs durch das Muster der vorhandenen Leitfähigkeiten bestimmt wird und von der Position der Zelle entlang der dorso-ventralen Achse abhängt. Dieser Gradient ist bereits in frühen Entwicklungsstadien nachweisbar. Im Zuge der weiteren Entwicklung werden SCs weniger erregbar und der Bereich der Resonanzfrequenz dehnt sich nach dorsal aus. Pharmakologische Experimente ergaben, dass die Resonanz von SCs von HCN-Kanälen abhängt und von Kv7-Kanälen moduliert wird. Außerdem konnten zwei, bisher unbekannte Klassen von oszillatorischen Interneuronen beschrieben werden, deren Resonanz ebenfalls im Theta-Bereich liegt und auf ähnliche Leitfähigkeiten zurückgeführt werden kann. Weitere, auch CA1-Pyramidenzellen einschließende Experimente ergaben, dass HCN-Kanäle die allgemeine Voraussetzung für Resonanz zu sein scheinen während Kv7-Kanäle potente Modulatoren darstellen. Die pharmakologische Blockade dieser Kanäle unterbrach Netzwerkoszillation im Hippokampus. Dies unterstützt die These, dass bestimmte Leitfähigkeiten Neuronen Resonanzeigeschaften verleihen und somit wiederum Netzwerkoszillationen unterstützen. / Rhythmic neuronal activity is thought to be crucial for information processing in the brain. Neuronal network oscillations are heterogeneous, vary with brain region and type of information processed. They are classified according to their frequency content. Their generation relies on network circuitry, synaptic transmission and neuronal properties. Oscillatory behavior of individual cells has been particularly implicated. Different cell types within the hippocampal formation such as layer II stellate cells (SC) of the medial entorhinal cortex display oscillatory activity and are resonant, i.e., respond preferentially to stimuli of a given frequency. Voltage dependent ionic conductances have been suggested to give rise to these phenomena. It was found that resonance of SCs is defined by the composition of voltage-dependent channels embedded in their membrane and changes with their position along the dorsal-ventral axis. This gradient of SC properties develops during early postnatal life. During the transition to adulthood cells become less excitable and the range of resonance frequencies expands in the dorsal direction. Pharmacological experiments reveal the resonance of SCs to depend strongly on HCN-channels and to be modulated by Kv7-channels. Also, two previously unknown classes of oscillating interneurons were identified in the stratum radiatum of the CA1 region. These are targeted by neurons from the dentate gyrus, display frequency preferences in the theta range which relies on similar membrane conductances. Further experiments including CA1 pyramidal cells suggested HCN-channels to be the primary global requirement for resonance whereas Kv7-channels appear to be effective modulators. Pharmacological blockade of these channels disrupted ongoing network oscillations in the hippocampus. This supports the notion that specific ion channels support rhythmic activity of individual cells and in turn of entire networks.
|
264 |
Elektrophysiologische Charakterisierung künstlicher Ionenkanäle in lebenden ZellenFidzinski, Pawel 03 May 2006 (has links)
Durch Ausübung physiologischer Grundfunktionen spielen Ionenkanäle eine entscheidende Rolle für die reguläre Funktion von Zellen. Zum besseren Verständnis ihrer Struktur und Funktion sind Untersuchungen natürlicher und künstlicher Ionenkanäle wichtige Werkzeuge. Großes analytisches und therapeutisches Potential ist in der Untersuchung künstlicher Kanäle in lebenden Zellen vorhanden, was bisher wenig Beachtung fand. In der vorliegenden Arbeit wurde die Wirkung der künstlichen Ionenkanäle THF-gram, THF-gram-TBDPS sowie linked-gram-TBDPS auf elektrophysiologische Eigenschaften boviner Trabekelwerkszellen des Auges anhand von Patch-Clamp-Untersuchungen im Whole-Cell-Modus analysiert. Die Untersuchung brachte folgende Erkenntnisse: 1. Die Inkorporation aller drei Verbindungen war erfolgreich, was sich durch Anstieg der Stromdichte und Verschiebung des Umkehrpotentials zeigte. 2. Einbau von THF-gram und THF-gram-TBDPS war mit dem Überleben der Zellen vereinbar, während linked-gram-TBDPS aufgrund einer sehr potenten Antwort bereits bei sehr geringen Konzentrationen zum raschen Zelltod führte. 3. Eine Asymmetrie der Stromantwort zugunsten stärkerer Auswärtsströme wurde bei THF-gram und in schwächerer Ausprägung bei THF-gram-TBDPS festgestellt. Linked-gram-TBDPS zeigte keine derartige Asymmetrie. 4. Unter Verwendung von Cs+ als Ladungsträger war der beobachtete Anstieg der Stromdichte bei allen drei Verbindungen eindeutig stärker als unter physiologischen Bedingungen (Na+/K+). 5. Die dargestellten Erkenntnisse sind ein erster Schritt zur therapeutischen Anwendung von künstlichen Ionenkanälen. Eine Weiterentwicklung in Richtung höherer Selektivität und besserer Kontrolle ist jedoch genauso erforderlich wie die Klärung der klinischen Umsetzbarkeit. / Ion channels play a pivotal role for regular cell function. To better understand their structure and function, investigation of both natural and artificial ion channels is being performed to date. Investigation of artificial channels in living cells hides a big potential, however, little attention has been paid to this field so far. In this work, the effect of the artificial ion channels THF-gram, THF-gram-TBDPS and linked-gram-TBDPS on electrophysiological properties of bovine trabecular meshwork cells was investigated with the patch-clamp-technique. Following results were obtained: 1. Incorporation of all three compounds was successful, which was proven by increase of current density and cell depolarisation. 2. The cells survived after incorporation of THF-gram and THF-gram-TBDPS but not after linked-gram-TBDPS, which resulted in cell death at very low concentrations. 3. Larger outward currents were observed with THF-gram and, at a lower extent, with THF-gram-TBDPS. Linked-gram-TBDPS did not show such an asymmetry. 4. With Cs+ as charge carrier all three compunds showed a stronger increase of current density than under physiological conditions (Na+/K+). 5. The decribed results are a first step towards therapeutic application of artificial ion channels, however, further development towards higher selectivity and better control is as necessary as clarification of clinical feasibility.
|
265 |
Normalisation de la fréquence cardiaque et de la conduction auriculo-ventriculaire dans des modèles de bradycardie congénitale par l'inhibition pharmacologique du courant IkACh / Inhibition of IKACh current rescues bradycardia and atrioventricular block in models of congenital sino-atrial dysfunctionChung You Chong, Antony 16 April 2019 (has links)
Correction de la bradycardie et des troubles de conduction dans des modèles de dysfonction congénitale de l’automatisme cardiaque par l’inhibition pharmacologique du courant IKAChLa dysfonction du nœud sinusal (DNS) est l’une des principales pathologies de l’automatisme cardiaque. La DNS désigne une multitude de troubles caractérisées par l’incapacité du nœud sinusal (SAN) à générer ou à conduire l’impulsion cardiaque. La seule thérapie actuellement disponible pour la DNS est l’implantation d’un pacemaker électronique. Des études épidémiologiques prévoient un besoin croissant d’implantation de pacemaker électroniques au cours des 50 prochaines années à cause du vieillissement de la population. Le développement des thérapies innovantes pour la DNS est donc un enjeu médical et sociétal important. L’inhibition pharmacologique du courant potassique activé par l’acétylcholine (IKACh) pourrait constituer une nouvelle option thérapeutique pour traiter la DNS.Nous avons donc testé l’inhibition du courant IKACh par un peptide de venin d’abeille, la Tertiapine-Q, pour corriger le DNS et le dysfonctionnement de la conduction chez des souris modèle de pathologies cardiaque humaine en particulier les souris portant l’inactivation des canaux L Cav1.3 (Cav1.3-/-), les souris portant simultanément l’ablation de Cav1.3 et des canaux de type-T Cav3.1 (Cav1.3-/-/Cav3.1-/-), les souris porteuses de la perte de fonction des canaux f- (HCN4-CNBD) et les souris haplo-suffisantes Nav1.5 (Scn5a+/-).Nous avons enregistré par télémétrie, l’ECG, chez ces modèles murins avant et après l’administration de différentes doses de Tertiapine-Q.L’inhibition du courant IKACh par la Tertiapine-Q prévient des dysfonctions sinusales et améliore la conduction dans ces modèles de bradycardie congénitale suggérant la possibilité d’un développement d’un ciblage pharmacologique d’IKACh afin de parvenir à corriger la DNS et les troubles de la conduction. / Inhibition of KACh channels by the bee venom peptide tertiapin-Q rescues inherited cardiac conduction defects, sino-atrial bradycardia, and atrioventricular block in models of congenital dysfunctionSinus node dysfunction (SND) is a widespread disease of heart automaticity. SND refers to a multitude of sinus node (SAN) disorders characterized by failure to generate or conduct the cardiac impulse. The only currently available therapy for chronic SND is the implantation of an electronic pacemaker. Epidemiological studies forecast an increasing need for pacemaker implantation during the next 50 years, with the ageing of the population. It is thus an important medical and societal issue, to develop innovative therapies for SND. Pharmacologic inhibition of the G-protein activated K+ current (IKACh) could be a new therapeutic option to treat bradycardia and SND associated with other cardiac pathologies.We tested whether inhibition of IKAch by the peptide Tertiapin-Q could rescue SND and conduction dysfunction in Cav1.3-/- mice carrying concurrent ablation of L-type Cav1.3 and T-type Cav3.1 channels (Cav1.3-/-/Cav3.1-/-), mice carrying loss-of-function of f-channels (HCN4-CNBD) and Nav1.5 haploinsufficient (Scn5a+/-) mice.We employed telemetric ECG recordings of heart rate (HR), SAN pacemaking and AV dysfunction in mice before and after administration of different doses of Tertiapin-Q.Tertiapin-Q significantly improves the HR of Cav1.3-/-, Cav1.3-/-/Cav3.1-/-, and HCN4-CNBD from doses of 0.1 to 5 mg/kg. HRs of Tertiapin-Q-treated mice were similar to those recorded in untreated wild-type mice. Tertiapin-Q also improved cardiac conduction of Scn5a+/- mice by 24%.Pharmacological inhibition of IKAch by Tertiapin-Q prevents SAN dysfunction and improves conduction in three models of congenital bradycardia suggesting the possibility of pharmacologic development of IKACh targeting to manage SND and conduction disease, to delay or replace the implantation of an electronic pacemaker.
|
266 |
Ionenkanäle in deaktivierter MikrogliaEder, Claudia 10 April 2001 (has links)
In der vorliegenden Habilitationsarbeit wurden die Ionenkanäle von Mikrogliazellen mit Hilfe der Patch-clamp-Technik untersucht, nachdem die Mikrogliazellen in den deaktivierten Zustand überführt worden waren. Die Deaktivierung der Mikroglia erfolgte durch die Zugabe des astrozytenkonditionierten Mediums. Nach der Deaktivierung exprimierten die Mikrogliazellen einwärts- und auswärtsgleichrichtende sowie Ca2+-aktivierte Kaliumkanäle. Der auswärtsgleichrichtende Kaliumkanal wurde erst nach Zugabe des astrozytenkonditionierten Mediums exprimiert, wobei das durch die Astrozyten freigesetzte Zytokin transformierender Wachstumsfaktor für diesen Prozeß verantwortlich gemacht werden konnte. Zusätzlich wurden Chloridkanäle an deaktivierten Mikrogliazellen nachgewiesen, die an den Ramifizierungsprozessen der Zellen, d.h. dem Übergang von der amöboiden in die ramifizierte Zellmorphologie, beteiligt waren. Die an Mikrogliazellen exprimierten Protonenkanäle spielen offensichtlich eine wichtige Rolle bei der Generierung von reaktiven Sauerstoffradikalen und wurden im Prozeß der Deaktivierung der Mikrogliazellen herunterreguliert. / The current work describes patch clamp recordings in cultured murine microglial cells, which had been deactivated following exposure to astrocyte-conditioned medium. Deactivated microglial cells expressed inwardly rectifying, outwardly rectifying and calcium-activated potassium channels. The outwardly rectifying potassium channels were upregulated following treatment of microglial cells with the astrocyte-conditioned medium. The anti-inflammatory cytokine transforming growth factor was released by astrocytes and appeared to be responsible for the observed upregulation of outwardly rectifying potassium channels in deactivated microglia. In addition, deactivated microglial cells expressed chloride channels, which were found to be involved in microglial ramification, i.e., in the transformation of microglial cells from ameboid into ramified morphology. Voltage-gated proton channels, which are involved in processes of oxygen radical generation, were downregulated in deactivated microglial cells.
|
267 |
Computer Simulation of Biological Ion ChannelsHoyles, Matthew, Matthew.Hoyles@anu.edu.au January 2000 (has links)
This thesis describes a project in which algorithms are developed for the rapid and accurate solution of Poisson's equation in the presence of a dielectric boundary and multiple point charges. These algorithms are then used to perform Brownian dynamics simulations on realistic models of biological ion channels. An iterative method of solution, in which the dielectric boundary is tiled with variable sized surface charge sectors, provides the flexibility to deal with arbitrarily shaped boundaries, but is too slow to perform Brownian dynamics. An analytical solution is derived, which is faster and more accurate, but only works for a toroidal boundary. Finally, a method is developed of pre-calculating solutions to Poisson's equation and storing them in tables. The solution for a particular configuration of ions in the channel can then be assembled by interpolation from the tables and application of the principle of superposition. This algorithm combines the flexibility of the iterative method with greater speed even than the analytical method, and is fast enough that channel conductance can be predicted. The results of simulations for a model single-ion channel, based on the acetylcholine receptor channel, show that the narrow pore through the low dielectric strength medium of the protein creates an energy barrier which restricts the permeation of ions. They further show that this barrier can be removed by dipoles in the neck of the channel, but that the barrier is not removed by shielding by counter-ions. The results of simulations for a model multi-ion channel, based on a bacterial potassium channel, show that the model channel has conductance characteristics similar to those of real potassium channels. Ions appear to move through the model multi-ion channel via rapid transitions between a series of semi-stable states. This observation suggests a possible physical basis for the reaction rate theory of channel conductance, and opens up an avenue for future research.
|
268 |
The effect of long-term interleukin-1 beta exposure on sensory neuron electrical membrane properties: implications for neuropathic painStemkowski, Patrick 06 1900 (has links)
The effect of interleukin-1 beta (IL-1β) on the electrical properties of sensory neurons was assessed at comparable levels and exposure times to those found in animal models of neuropathic pain. Experiments involved whole cell current- or voltage-clamp recordings from rat dorsal root ganglion (DRG) neurons in defined medium, neuron enriched cultures.
5-6 days exposure to 100 pM IL-1β produced neuron specific effects. These included an increase in the excitability of medium diameter and small diameter isolectin B4 (IB4)-positive neurons that was comparable to that found after peripheral nerve injury. By contrast, a reduction in excitability was observed in large diameter neurons, while no effect was found in small diameter IB4-negative neurons.
Further characterization of changes in medium and small IB4-positive neurons revealed that some, but not all, effects of IL-1β were mediated through its receptor, IL-1RI. Using appropriate voltage protocols and/or ion substitutions, it was found that neuron specific changes in several ionic currents, including alterations in hyperpolarization activated inward current (IH) and decreases in various K+ currents contribute to the increased excitability produced by IL-1β.
Overall, these studies revealed that:
1. The effects of long-term exposure of DRG neurons to IL-1β are reflective of the enduring increase in primary afferent excitability reported after peripheral nerve injury. This expands the recognized role of IL-1β in acute inflammatory pain to neuropathic pain.
2. Hyperexcitability in medium neurons exposed to IL-1β likely includes mixed populations of neurons corresponding to nociceptive and non-nociceptive primary afferent fibres and, therefore, has relevance to hyperalgesia and allodynia, respectively.
3. The responsiveness of small IB4-positive neurons, but not IB4-negative, to prolonged IL-1β exposure is consistent with the suggestion that small IB4-negative afferents are involved in inflammatory pain, while small IB4-positive afferents are involved neuropathic pain.
4. The identification of receptor mediated effects and several contributing ionic mechanisms, may have relevance to the development of new therapeutic approaches to neuropathic pain.
5. IL-1β can contribute to increased neuronal excitability by mechanisms that are independent of IL-1RI signalling. This should be taken into account when targeting IL-1β, or more specifically IL-1RI, in the management of neuropathic pain.
|
269 |
Assessment of Cerebellar and Hippocampal Morphology and Biochemical Parameters in the Compound Heterozygous, Tottering/leaner MouseMurawski, Emily M. 2009 December 1900 (has links)
Due to two different mutations in the gene that encodes the a1A subunit of
voltage-activated CaV 2.1 calcium ion channels, the compound heterozygous
tottering/leaner (tg/tgla) mouse exhibits numerous neurological deficits. Human
disorders that arise from mutations in this voltage dependent calcium channel are
familial hemiplegic migraine, episodic ataxia-2, and spinocerebellar ataxia 6. The tg/tgla
mouse exhibits ataxia, movement disorders and memory impairment, suggesting that
both the cerebellum and hippocampus are affected. To gain greater understanding of the
many neurological abnormalities that are exhibited by the 90-120 day old tg/tgla mouse
the following aspects were investigated: 1) the morphology of the cerebellum and
hippocampus, 2) proliferation and death in cells of the hippocampal dentate gyrus and 3)
changes in basic biochemical parameters in granule cells of the cerebellum and
hippocampus.
This study revealed no volume abnormalities within the hippocampus of the
mutant mice, but a decrease in cell density with the pyramidal layer of CA3 and the hilus
of the dentate gyrus. Cell size in the CA3 region was unaffected, but cell size in the hilus of the dentate gyrus did not exhibit the gender difference seen in the wild type
mouse. The cerebellum showed a decrease in volume without any decrease in cerebellar
cellular density. Cell proliferation and differentiation in the subgranular zone of the
hippocampal dentate gyrus remained normal. This region also revealed a decrease in
cell death in the tg/tgla mice.
Basal intracellular calcium levels in granule cells show no difference within the
hippocampus, but an increase in the tg/tgla male cerebellum compared to the wild type
male cerebellum. There was no significant difference in granule cell mitochondrial
membrane potential within the wild type and mutant animals in either the hippocampus
or cerebellum. The rate of reactive oxygen species (ROS) production in granule cells
revealed no variation within the hippocampus or cerebellum. The amount of ROS was
decreased in cerebellar granule cells, but not granule cells of the hippocampus. Inducing
ROS showed no alteration in production or amount of ROS produced in the
hippocampus, but did show a ceiling in the amount of ROS produced, but not rate of
production, in the cerebellum.
|
270 |
Intracellular Calcium Dynamics In Dendrites Of Hippocampal Neurons Rendered Epileptic And In Processes Of Astrocytes Following Glutamate PretreatmentPadmashri, R 08 1900 (has links)
The fundamental attribute of neurons is their cellular electrical excitability, which is based on the expression of a plethora of ligand- and voltage-gated membrane channels that give rise to prominent membrane currents and membrane potential variations that represent the biophysical substrate underlying the transfer and integration of information
at the cellular level. Dendrites have both an electrical and a biochemical character, which are closely linked. In contrast, glial cells are non-electrically excitable but nevertheless display a form of excitability that is based on variations of the Ca2+ concentration in the cytosol rather than electrical changes in the membrane. Cytoplasmic Ca2+ serves as an
intracellular signal that is responsible for controlling a multitude of cellular processes. The key to this pleiotropic role is the complex spatiotemporal organization of the [Ca2+]i rise evoked by extracellular agonists, which allows selected effectors to be recruited and specific actions to be initiated. Ca2+ handling in the cell is maintained by operation of multiple mechanisms of Ca2+ influx, internal release, diffusion, buffering and extrusion. Ca2+ tends to be a rather parochial operator with a small radius of action from its point of
entry at the cytoplasm resulting in the concept of microdomains. Dendritic Ca2+ signaling have been shown to be highly compartmentalized and astrocytic processes have been reported to be constituted by hundreds of microdomains that represent the elementary units of the astrocyte Ca2+ signal, from where it can eventually propagate to other regions of the cell. The astrocyte Ca2+ elevation may thus act as intra and intercellular signal that can propagate within and between astrocytes, signaling to different regions of the cell and to different cells. The spatio-temporal features of neuron-to-astrocyte communication, results from diverse neurotransmitters and signaling pathways that converge and cooperate to shape the Ca2+ signal in astrocytes. Alterations in Ca2+ homeostasis have been shown to be associated with major pathological conditions of the brain such as epilepsy, ischemia and neurodegenerative diseases.
Although there are evidences of Ca2+ rise in hippocampal neurons in in vitro models of
epilepsy (Pal et al., 1999; Limbrick et al., 2001), there is no information on the Ca2+
regulatory mechanisms operating in discrete compartments of the epileptic neuron
following Ca2+ influx through voltage gated calcium channels (VGCCs). In the first part
of the work, the spatial and temporal profiles of depolarization induced changes in the intracellular Ca2+ concentration in the dendrites of cultured autaptic hippocampal pyramidal neurons rendered epileptic experimentally have been addressed. Our in vitro epilepsy model consisted of hippocampal neurons in autaptic culture that were grown in the presence of kynurenate and high Mg2+, and subsequently washing the preparation free of the blockers. To understand the differences in Ca2+ handling mechanisms in different
compartments of a control neuron and the kynurenate treated neuron, a combination of
whole-cell patch-clamp recording and fast Ca2+ imaging methods using the Ca2+ indicator
Oregon Green 488 BAPTA-1 was applied. All our analysis was focused on localized regions in the dendrite that showed pronounced Ca2+ transients upon activation of high voltage activated (HVA) Ca2+ channels. The spatial extent of Ca2+ signals suggested the presence of distinct dendritic compartments that respond to the depolarizing stimulus. Further, the local Ca2+ transients were observed even in the presence of NMDA and AMPA receptor antagonists, suggesting that the opening of VGCCs primarily triggered the local Ca2+ changes. The prominent changes in intracellular Ca2+ observed in these
dendritic regions appear to be sites where Ca2+ evoked dendritic exocytosis (CEDE) takes
place. Since cellular Ca2+ buffers determine the amplitude and diffusional spread of
neuronal Ca2+ signals, quantitative estimates of the time-dependent spread of intracellular Ca2+ in the dendritic compartments in the control and treated neurons were done using image processing techniques. Physiological changes in Ca2+ channel functioning were also induced by kynurenate treatment and one such noticeable difference was the observation of Ca2+ dependent inactivation in the treated neurons. We provide evidences of localized Ca2+ changes in the dendrites of hippocampal neurons that are rendered epileptic by kynurenate treatment, suggesting that these sites are more vulnerable (Padmashri et al., 2006). This might contribute to the epileptiform activity by local changes in cellular and membrane properties in complex ways that remains to be clearly understood.
Status Epilepticus (SE), stroke and traumatic brain injury are all associated with large increases in extracellular glutamate concentrations. The concentration of glutamate in the extracellular fluid is around 3-4 µM and astrocytes are primarily responsible for the uptake of glutamate at the synapses. The extracellular levels of glutamate has been shown to increase dramatically (16 fold) in human SE suggesting an important role of glutamate
in the mechanism of seizure activity and seizure related brain damage (Carlson et al.,
1992). Several other studies have also shown a persistent increase in extracellular
glutamate concentration to potentially neurotoxic concentrations in the epileptogenic hippocampus (During and Spencer, 1993; Sherwin, 1999; Cavus et al., 2005).
We addressed the problem related to the effects of prolonged glutamate pretreatment on Ca2+ signaling in an individual astrocyte and its adjoining astrocyte (astrocyte pair),
rather than on a syncytium of astrocytes in culture. Individual astrocytes may have
functional domains that respond to an agonist through distinct receptor signaling systems. These are difficult to observe in studies that are done on glial syncytium because of spatial limits of image capture. This was examined with simultaneous somatic patch-pipette recording of a single astrocyte to evoke voltage-gated calcium currents, and Ca2+ imaging using the Ca2+ indicator Oregon Green 488 BAPTA-1 to identify the Ca2+ microdomains. Transient Ca2+ changes locked to the depolarization were observed in certain compartments in the astrocyte processes of the depolarized astrocyte and the responses were more pronounced in the adjoining astrocyte of the astrocyte pair. The Ca2+ transient amplitudes were enhanced on pretreatment of cells with glutamate (500 µM for 20 minutes). Estimation of local Ca2+ diffusion coefficients in the astrocytic processes indicated higher values in the adjoining astrocyte of the glutamate pretreated
group. In order to understand the underlying mechanisms, we performed the experiments
in the presence of different blockers for the metabotropic glutamate receptor, inositol
1,4,5 triphosphate (IP3) receptors and gap junctions. Ca2+ transients recorded on
pretreatment of cells with glutamate showed attenuated responses in the presence of the
metabotropic glutamate receptor (mGluR) antagonist α-Methyl(4-Carboxy-Phenyl)
Glycine (MCPG). Intracellular heparin (an antagonist of IP3 receptor) introduced in the
depolarized astrocyte did not affect the Ca2+ transients in the heparin loaded astrocyte, but attenuated the [Ca2+]i responses in the adjoining astrocyte suggesting that IP3 may be the transfer signal. The uncoupling agent 1-Octanol attenuated the [Ca2+]i responses in
the adjoining cell of the astrocyte pair in both the control and glutamate pretreated
astrocytes indicating the role of gap junctional communication. The findings of [Ca2+]i responses within discrete regions of astrocytic processes suggest that astrocytes may be comprised of microdomains whose properties are altered by glutamate pretreatment. The data also indicates that glutamate induced alterations in Ca2+ signaling in the astrocyte pair may be mediated through phospholipase C (PLC), IP3, internal Ca2+ stores, VGCCs and gap junction channels (Padmashri and Sikdar, 2006).
Neuronal (EAAC-1) and glial (GLT-1 and GLAST) glutamate transporters facilitate
glutamate reuptake after synaptic release. Transgenic mice with GLT-1 knockout display
spontaneous epileptic activity (Tanaka et al., 1997) and loss of glial glutamate
transporters using chronic antisense nucleotide administration was reported to result in elevated extracellular glutamate levels and neurodegeneration characteristic of excitotoxity (Rothstein et al., 1996). Dysfunction of glutamate transporters and the
resulting increase of glutamate have been speculated to play an important role in infantile epilepsies (Demarque et al., 2004). We examined the effects of pretreatment with glutamate in the presence of the glutamate transport inhibitor threo-β-hydroxy-aspartate (TBHA) and in Na+-free extracellular medium to understand whether this resulted in any alteration in the astrocytic intracellular Ca2+ dynamics following activation of voltage gated calcium channels. The Ca2+ responses were found to be attenuated in both the cases
indicating that the elevated levels of extracellular glutamate due to blockade of glutamate transporters may influence the responses mediated by the astrocytic glutamate receptors. Our studies indicate that the heightened extracellular glutamate concentration is not gliotoxic in our experimental system, although it may have a profound effect on altering the activity of surrounding neurons which was not addressed in the present work.
Several studies have indicated that neurons control the level of gap junction mediated
communication between astrocytes (Giaume and McCarthy, 1996; Rouach et al, 2000). All our earlier studies were done on process bearing astrocytes that were co-cultured with
neurons. We have addressed the question as to whether the spatio-temporal changes in
[Ca2+]i in astrocyte pairs differ if the astrocytes are cultured in the absence of neurons. The results indicate that there is indeed a significant reduction in the responses that are evoked in response to the depolarization pulse in the adjoining cell of the astrocyte pair. These experiments demonstrate that neurons in the cocultures may selectively enhance the Ca2+ responses possibly by increasing the coupling between the two cells.
|
Page generated in 0.3031 seconds