• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 239
  • 87
  • 50
  • 43
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 4
  • Tagged with
  • 649
  • 649
  • 133
  • 77
  • 70
  • 69
  • 68
  • 63
  • 60
  • 57
  • 46
  • 45
  • 40
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Simulating electric double layers at transition metal-water interfaces from density functional theory based molecular dynamics

Le, Jiabo January 2017 (has links)
This PhD project aims at understanding the electric double layers (EDLs) at transition metal-water interfaces with density functional theory based molecular dynamics (DFTMD). We plan to develop a method for computationally determining the electrode potential of an interface, which bridges experiments and theoretical computation. After that, we will investigate the microscopic structure of the EDLs, including ion distribution, water orientation, hydrogen bonding and so on. Furthermore, we are interested in the charge transfer between metal surface and water at different configurations, and some consequences this may lead to. In the first part, we have simulated Pt(111)-, Au(111)-, Pd(111)- and Ag(111)-water interfaces at a well-defined condition, potential of zero charge (PZC), by DFTMD. We find the water coverage of the metal surface is ⇠0.8ML, and there is no ordered pattern formed at room temperature. Moreover, we have characterised three configurations (watA, watB-down and watB-up) from the surface water layer, and revealed their hydrogen bonding networks. In the second part, we have developed a computationally efficient scheme for determining the electrode potential of the metal-water interfaces with respect to standard hydrogen electrode (SHE), and obtained the PZC values of Pt(111), Au(111), Pd(111) and Ag(111)-water interfaces within a good accuracy. Furthermore, we find that the interface dipole potentials are almost entirely caused by charge transfer from water and to the metal surfaces, the magnitude of which depends on the bonding strength between water and the metals, while water orientation hardly contributes at the PZC condition. In the third part, we have calculated the vibrational spectrum of the chemisorbed water on Pt(111) and Au(111), and found their peak positions of the stretch vibrational frequency are red-shifted, the magnitude of which is dependent to the strength of the metal-water interaction and the local hydrogen bonding. We have also suggested that the chemisorbed water is the source of the peaks at 2850-3000 cm-1 observed in experiments. In the last part, we have simulated a series of EDLs at Au(111)-water interfaces, their reliability is confirmed by comparing the differential capacitance with experimental values. We find the Stern layer gets compressed and the partial solvation layer of the ion is peeled off at a negatively charged surface. Moreover, we find the configuration of the interfacial water is reoriented from 'parallel water', to 'H-downwater', then further to 'perpendicular water' when the metal surface is progressively charged with electrons.
172

Mathematical and Numerical Modeling of Hybrid Adsorption and Biological Treatment Systems for Enhanced Nitrogen Removal

Payne, Karl A. 06 July 2018 (has links)
High nutrient loading into groundwater and surface water systems has deleterious impacts on the environment, such as eutrophication, decimation of fish populations, and oxygen depletion. Conventional onsite wastewater treatment systems (OWTS) and various waste streams with high ammonium (NH4+) concentrations present a challenge, due the inconsistent performance of environmental biotechnologies aimed at managing nutrients from these sources. Biological nitrogen removal (BNR) is commonly used in batch or packed-bed reactor configurations for nitrogen removal from various waste streams. In recognition of the need for resource recovery, algal photobioreactors are another type of environmental biotechnology with the potential for simultaneously treating wastewater while recovering energy. However, irrespective of the technology adopted, outstanding issues remain that affect the consistent performance of environmental biotechnologies for nitrogen removal and resource recovery. In OWTS, transient loading can lead to inconsistent nitrogen removal efficiency, while the presence of high free ammonia (FA) can exert inhibitory effects on microorganisms that mediate transformation of nitrogen species as well as microalgae that utilize nitrogen. Therefore, to overcome these challenges there have been experimental studies investigating the addition of adsorption and ion exchange (IX) media that can temporarily take up specific nitrogen ions. Bioreactors comprised of microorganisms and adsorption/IX media can attenuate transient loading as well as mitigate inhibitory effects on microorganisms and microalgae; however, the interplay between physicochemical and processes in these systems is not well understood. Therefore, the main objective of this dissertation was to develop theoretical and numerical models that elucidate the complex interactions that influence the fate of chemical species in the bioreactors. To achieve this objective and address the issues related to improving the understanding of the underlying mechanisms occurring within the environmental biotechnologies investigated, the following three research studies were done: (i) experimental and theoretical modeling studies of an IX-assisted nitrification process for treatment of high NH4+ strength wastewater (Chapter 3), (ii) theoretical and numerical modeling of a hybrid algal photosynthesis and ion exchange (HAPIX) process for NH4+ removal and resource recovery (Chapter 4), and (iii) mathematical and numerical modeling of a mixotrophic denitrification process for nitrate (NO3-) removal under transient inflow conditions (Chapter 5). The experimental results for the IX-assisted nitrification process showed that by amending the bioreactor with zeolite, there was a marked increase in the nitrification rate as evidenced by an increase in NO3– production from an initial concentration of 3.7 mg-N L-1 to 160 mg-N L-1. This increase is approximately an order of magnitude greater than the increase in the reactor without chabazite. Therefore, the experimental studies provided support for the hypothesis that IX enhances the nitrification process. To garner further support for the hypothesis and better understand the mechanisms in the bioreactor, a novel mathematical model was developed that mechanistically describes IX kinetics by surface diffusion coupled with a nitrification inhibition model described by the Andrews equation. The agreement between the model and data suggests that the mathematical model developed provides a theoretically sound conceptual understanding of IX-assisted nitrification. A model based on the physics of Fickian diffusion, IX chemistry, and algal growth with co-limiting factors including NH4+, light irradiance, and temperature was developed to describe a batch reactor comprised of microalgae and zeolite. The model can reproduce the temporal history of NH4+ in the reactor as well as the growth of microalgae biomass. The mathematical model developed for the HAPIX process balances between simplicity and accuracy to provide a sound theoretical framework for mechanisms involved. In OWTS, transient inflow conditions have an influence on the performance of environmental biotechnologies for nitrogen removal. Prior experiments have shown that for denitrification, a tire-sulfur hybrid adsorption and denitrification (T-SHAD) bioreactor consistently removes nitrogen under varying influent flow and concentration conditions. To enhance the understanding of the underlying mechanisms in the T-SHAD bioreactor, a mathematical model describing mass transport of NO3- and SO42- in the aqueous phase and mixotrophic denitrification was developed. Additionally, a numerical tool to solve the mathematical model was implemented and compared to previously conducted experiments. Results from the numerical simulations capture the trend of the experimental data showing approximately 90% NO3- -N removal under varying flow conditions. Moreover, the model describes the effluent characteristics of the process showing a transient response in correspondence the changes in fluid velocity. The new tools developed provide new insight into the underlying mechanisms of physical, chemical, and biological processes within these bioreactors. The tools developed in this dissertation have a potential broad impact in environmental biotechnology for wastewater treatment in on-site systems, for treatment of high strength wastewater, and can be extended easily for stormwater management systems aimed at mitigating high nutrient loading to the environment.
173

Analytical methods for the study of migration of chloride ions in reinforced concrete under cathodic protection

Orlova, Nadejda V. 12 June 1998 (has links)
Graduation date: 1999
174

Effects of adsorbent structure and adsorption on transport phenomena in ion-exchange chromatography

Langford, John F., Jr. January 2007 (has links)
Thesis (Ph.D.)--University of Delaware, 2007. / Principal faculty advisor: Abraham M. Lenhoff, Dept. of Chemical Engineering. Includes bibliographical references.
175

Modification of Float Glass Surfaces by Ion Exchange

Karlsson, Stefan January 2012 (has links)
Glass is a common material in each person’s life, e.g. drinking vessels, windows, displays, insulation and optical fibres. By modifying the glass surface it is possible to change the performance of the entire glass object, generally known as Surface Engineering. Ion exchange is a convenient technique to modify the glass surface composition and its properties, e.g. optical, mechanical, electrical and chemical properties, without ruining the surface finish of the glass.   This thesis reports the findings of two different research tasks; characterisation of the single-side ion exchange process and the novel properties induced. The characterisation of the ion exchange process was mainly performed by utilising a novel analytical equipment: the Surface Ablation Cell (SAC), allowing continuous removal of the flat glass surface by controlled isotropic dissolution. SAC-AAS has provided concentration vs. depth profiles of float glass ion exchanged with K+, Cu+, Rb+ and Cs+. In addition, SEM-EDX has provided concentration vs. depth profiles of Ag+ ion exchanged samples and validation of a copper concentration vs. depth profile. From the concentration vs. depth profiles, the effective diffusion coefficients and activation energies of the ion exchange processes have been calculated. Depending on the treatment time and treatment temperature, penetration depths in the range of 5-10 μm (Rb+, Cs+), 20-30 μm (K+, Cu+) and 80-100 μm (Ag+) can be readily obtained. The effective diffusion coefficients followed the order Ag+>K+>Cu+>Rb+>Cs+. This is in accordance with the ionic radii for the alkali ions (K+<Rb+<Cs+) but reverse for the noble metal ions (Cu+<Ag+).   The glass properties modified by single-side ion exchange have mainly been characterised by UV-VIS spectroscopy and flexural strength measurements. Cu+ and Ag+ ion exchange give rise to surface colouration, Cu+ copper-ruby and Ag+ yellow/amber. The surface-ruby colouration was found to depend on the residual tin ions in the tin-side of the float glass. The flexural strength was studied using the coaxial double ring-test method which also was suitable for holed specimens. The flexural strength of K+ ion exchanged float glass samples was found to substantially increase compared to untreated.
176

Studies of chemical speciation of trace metals in natural waters using an on-line electrochemical cell and ion exchange system

Sule, Pushkar Anant 22 April 1991 (has links)
Graduation date: 1991
177

The Application of Sulfonated Poly(arylene ether)s for Proton Exchange Membrane

Ho, Chi-Jen 06 July 2011 (has links)
Three aromatic poly(arylene ether)s P2¡BP3¡BP4 were synthesized from bis(fluoride)4,4¡¨¡¨-Difluoro-3,3¡¨¡¨-bsi-trifluoromethyl-n¡¨-bisphenyl-[1,1¡¦;4¡¦,1¡¨;4¡¨,1¡¨¡¦;4¡¨¡¦,1¡¨¡¨]-quinquephenyl(n¡¨:2¡¨,3¡¨[G2];2¡¨,3¡¨,5¡¨[G3];2¡¨,3¡¨,5¡¨,6¡¨[G4]) with 4,4'-(9-Fluorenylidene)diphenol. The molecular weight of the polymer (Mw: 105-1.6¡Ñ105, PDI:1.5-2.2) was measured by gel permeation chromatography and the structure was confirmed by NMR spectra. Thermal stability was measured using Thermogravimetry and Thermomechanical Analysis. The polymer had a Td at 520¢J ~550¢J, and soft point at 310¢J. Young's modulus of polymer was (1.25-2.5Gpa). This polymer has high strength, modulus of elasticity, and thermal stability. The polymer consists of polyaromatic groups with bisfluoride monomer, (5, 6, 7 aromatic). We hypothesized that sulfonation of the polymer will exhibit high conductivity and great mechanical properties. Ion exchange capacities (IECs) were evaluated by acid¡Vbase titration. We sulfonated the polymer in order to apply to the proton exchange membrane fuel cell. The results showed after sulfonation of P4, IEC is 3.3(meq/g), and sulfonation of P2 showed that its proton conductivity is 75% more than Nafion117 at 80¢J with 0.28(S/cm). Keywords: proton exchange membrane, proton conductivity, Nafion, sulfonated, ion exchange capacity
178

Distribution of Trace Elements (Cd, Cu, Ni, Zn) in Waters from Southwestern Coast off Taiwan

Sheu, Yen-Lin 22 August 2012 (has links)
Water samples were collected from coastal region off southwestern Taiwan during two cruises in different seasons (October, 2008 and March, 2010). In order to provide information for trace elements in this region, this study investigated the distribution and partitioning of dissolved trace elements (Cd, Cu, Ni, Zn), and to relate the influences of complicated hydrological conditions to trace element distributions. Fractionation of dissolved trace elements was applied by a one-step preconcentration technique which uses cationic and anionic exchange columns. Trace element fractions were separated to operationally defined reactive (Chelex-labile), organically complexed (anionic-organic), and stable (inert) species. Distributions of trace elements from near-shore surface waters off southwestern Taiwan were mainly affected by temporally variable terrigenous inputs and hydrological conditions. The most significant sources of trace elements were from the Gao-Ping, Er-Ren, and Tseng-Wen Rivers. Some near-shore vertical profiles of trace elements and nutrients showed abnormal distributions that could be attributed to complicated currents in this region. Trace elements in waters at offshore stations in this study showed nutrient-type distributions, and that is similar to other open ocean vertical profiles, except for the upper layers, where terrestrial influences were pronounced in this study. The major proportions of trace elements determined in this study were of the Chelex-labile fractions, indicating that they were reactive and bioavailable. There is a small part of inert fraction, and the proportions are different between inshore and offshore waters, with pronounced inert fractions in near-shore waters.
179

Perchlorate Degradation Using Partially Oxidized Titanium Ions and Ion Exchange Membrane Hybrid System

Park, Sung Hyuk 2010 May 1900 (has links)
Perchlorate has entered human and environmental food chains and has received a great deal of attention because of its toxicity to humans. In this study, chemical degradation of perchlorate was investigated using partially oxidized titanium ions (Ti2+ and Ti3+) in solutions and as part of an ion exchange membrane reactor system. Aqueous titanium ions (Ti2+ and Ti3+) were applied to remove perchlorate ions and its destructive mechanism, reaction kinetics, and the effect of environmental factors were investigated. Titanium ions were able to degrade perchlorate ions very rapidly with half life less than one hour under conditions of high acid concentrations. A new reactor system with an ion exchange membrane was adapted to apply better the reactions of perchlorate destruction to water treatment practice. A novel treatment method was developed by integrating partially oxidized titanium ions with an ion exchange membrane, and it is named the Titanium and Membrane Hybrid System (TMH System). The results shown in this research demonstrate the feasibility of TMH System for perchlorate reduction. The perchlorate ions were rapidly adsorbed onto the ion exchange membrane and diffused through it, but they were reduced by titanium ions in the degradation zone relatively slowly. To enhance the overall rate of reaction, high concentrations of acid and Ti(III) are needed, but transport of hydrogen ions through the anion permeable membrane was observed and would be greater at higher acid concentrations. The proposed mathematical model predicts the performance and behavior of the TMH system for different physical and chemical conditions. It successfully described adsorption, diffusion and reduction of perchlorate in the system. This model could be used as an important tool for process design and optimization.
180

none

Xu, Yue-lin 07 July 2006 (has links)
none

Page generated in 0.0633 seconds