• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 11
  • 7
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 73
  • 73
  • 37
  • 27
  • 12
  • 12
  • 11
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

DESIGN AND FABRICATION OF FLEXIBLE SENSORS FOR SINGLE-USE APPLICATIONS

Aiganym Yermembetova (13954878) 13 October 2022 (has links)
<p>The development of reliable, robust and low-cost sensor devices is growing in importance and an ongoing challenge. From environmental monitoring and household safety to food and biopharmaceutical industries, the necessity for specific analyte detection is crucial. Over the years researchers have come up with myriad materials that can be used for efficient sensing devices. The materials employed are governed by application and performance criteria as well as the sensing mechanism, which might be based on physical or chemical principles. In this thesis, two different types of electrochemical sensor technologies were examined with special attention paid to the application of the devices, the materials used, and their feasibility for scalable manufacturing.</p> <p>In the first study, binary mixtures of conducting and semiconducting nanomaterials were explored as promising candidates for the manufacturing of low-cost ethylene sensor on flexible substrates. Ethylene (C2H4) is a small plant hormone which has been shown to affect the growth and senescence of flowers, leaves and fruits. Currently available devices have demonstrated high ethylene sensitivities with great potential for technology size reduction; however, some are not practical for use outside of the laboratory, lack portability, or require more research to demonstrate their reproducibility and stability in different environments, as well as selectivity to C2H4 in large-scale applications. Conductometric gas sensors based on a combination of carbon nanotubes (CNTs) and exfoliated molybdenum disulfide (MoS2) coated with molecular receptors is demonstrated for the selective detection of ethylene, including details on materials preparation, manufacturing, and characterization. Mixtures of CNTs and exfoliated MoS2 were deposited onto screen-printed interdigitated electrodes on plastic substrates, with optimization for scalable and continuous manufacturing by roll-to-roll methods. C2H4 detection levels of 0.1 ppm were readily achieved with responses on the second timescale.</p> <p>The second sensor technology shows how thin-film potentiometric electrodes based on ion-selective membranes can be designed to tolerate sterilizing radiation while providing excellent performance and signal stability. This sensor's development was motivated by the expanding need for single-use bioreactor systems in the biopharmaceutical industry, which require strict control over cell culture conditions for several weeks or more. Until recently, critical analysis has been conducted mostly by offline or “at-line” sampling of aliquots withdrawn from the sterile bioreactor. The latter is inefficient and can increase the risk of contamination. Inspired by the challenges related to cost, integration and performance following irradiation a potentiometric pH electrode was developed, intended for single-use applications. It was shown to be radiation-tolerant while providing reliable data comparable to a commercial pH meter over a period of three months. The electrodes exhibited quasi-linear signal drifts of +0.28 mV/day or 0.005 pH units/day. Thin-film γ-irradiated electrodes could provide accurate pH readings in sterilized culture media using a single-point calibration, within 0.07 pH units of a commercial meter with glass electrode and daily calibration. Furthermore, to advance the development of market-ready sensors past the conceptual stage, a few automated processes for scalable membrane deposition were investigated.</p>
72

Protonierungs-, Komplexbildungs- und Verteilungseigenschaften von tripodalen Azaliganden

Langer, Matthias 18 March 2006 (has links) (PDF)
Ziel der Untersuchungen war die Charakterisierung der Protonierungs-, Komplexbildungs- und Verteilungseigenschaften von tripodalen Azaliganden unter Anwendung thermodynamischer und spektroskopischer Verfahren. Im Vordergrund stand dabei der Einfluß des Lösungsmittels auf die zugrundeliegenden Gleichgewichte. Ausgehend von dem Aminopodanden Tris(2-aminoethylamin) (tren) wurden für eine Reihe abgeleiteter Verbindungen mit unterschiedlichen Stickstoffdonorfunktionen und Substituenten Faktoren untersucht, welche die beteiligten Gleichgewichte beeinflussen. Das Protonierungsverhalten der Polyaminverbindungen ist im starken Maße von elektrostatischen, elektronischen und Solvenseinflüssen abhängig, welche durch den Abstand der benachbarten Aminfunktionen, die Substitution am Aminstickstoffatom und die sterischen Eigenschaften der Substituenten bestimmt werden. Faktoren, welche die Solvatation der Aminfunktionen verringern, führen zu einer Verringerung der Protonierungskonstanten. Zudem beeinflussen die Zusammensetzung der verwendeten Methanol-Wasser-Gemische sowie das verwendete Leitsalz die Protonierungskonstanten z.T. deutlich. Die Komplexbildung der untersuchten Azapodanden mit Ag+ in Methanol zeigt Unterschiede, welche hauptsächlich auf die unterschiedliche Basizität von Imin- bzw. Aminstickstoffatomen sowie Substituenteneffekte zurückzuführen sind. Von sterisch aufwendigen Substituenten an den Donorfunktionen der Podandarme können zudem destabilisiernde Effekte infolge der Beeinflussung der Koordinationsgeometrie von Ag+ ausgehen. Heteroditope Tetraazacryptanden zeigen gegenüber abgeleiteten offenkettigen Podanden erhöhte Stabilitätskonstanten, wobei auch die Verknüpfungsposition der tripodalen Einheiten am Phenylspacer und die Bindung von Wasser im Käfighohlraum eine Rolle spielen. Lösungsmittelpolarität und Gegenion haben einen deutlichen Einfluß auf die Komplexbildung mit Ag+. Der Schwerpunkt von Untersuchungen an Zweiphasensystemenen wäßrig-organisch lag auf dem Übergang von Wasser in die organische Phase unter dem Einfluß von extrahierten Spezies bei der Kationen- und Anionenextraktion. Mit der Verteilung von Liganden und Kationen- bzw. Anionenkomplexen lassen sich Änderungen des Wassersättigungsgehaltes in der niedrigpolaren organischen Phase registrieren, die mit der unterschiedlichen Hydratation der Spezies korrelieren. Qualitativ wurde die Hydratation von Azapodanden mittels IR- und 1H-NMR-Spektroskopie nachgewiesen, wobei auch Hinweise auf bestimmte, die Hydratation verringernde Faktoren, wie intramolekulare Wasserstoffbrücken, erhalten wurden. Quantitativ konnten mittels Karl-Fischer-Titration und Verteilungsmessungen Hydratationszahlen für ausgewählte Ligansysteme bestimmt werden. Extrahierte Komplexe der Verbindungen mit Ag+, Co2+, Ni2+ und Zn2+ zeigen eine gegenüber den freien Komplexbildnern veränderte Hydratation. Bei Ag+ kann in allen Fällen von einer deutlichen Verringerung der Hydratationszahlen ausgegangen werden. Für die zweifachgeladenen Kationen konnte kein klarer Nachweis erbracht werden. Es ergeben sich aber Hinweise, wonach zum Teil keine Verringerung auftritt, was auf eine zusätzliche Koordinationsstellen von Wasser am Kation hinweist. Bei der Iodidextraktion treten bei gleichzeitiger pH-Abhängigkeit mehrere Komplexspezies auf, was die Bestimmung von Hydratationszahlen erschwert. Als hilfreich erwies sich die Simulation für verschiedene mögliche Zusammensetzungen. Dabei stellte sich heraus, daß der 1:1-Komplex des untersuchten monoprotonierten Aminopodanden in Chloroform wahrscheinlich stärker hydratisiert ist als der freie Ligand, während die entsprechende 1:2-Spezies (Ligand:Iodid) eine ähnliche oder schwächere Hydratation aufweist als der Ligand.
73

Protonierungs-, Komplexbildungs- und Verteilungseigenschaften von tripodalen Azaliganden

Langer, Matthias 13 January 2006 (has links)
Ziel der Untersuchungen war die Charakterisierung der Protonierungs-, Komplexbildungs- und Verteilungseigenschaften von tripodalen Azaliganden unter Anwendung thermodynamischer und spektroskopischer Verfahren. Im Vordergrund stand dabei der Einfluß des Lösungsmittels auf die zugrundeliegenden Gleichgewichte. Ausgehend von dem Aminopodanden Tris(2-aminoethylamin) (tren) wurden für eine Reihe abgeleiteter Verbindungen mit unterschiedlichen Stickstoffdonorfunktionen und Substituenten Faktoren untersucht, welche die beteiligten Gleichgewichte beeinflussen. Das Protonierungsverhalten der Polyaminverbindungen ist im starken Maße von elektrostatischen, elektronischen und Solvenseinflüssen abhängig, welche durch den Abstand der benachbarten Aminfunktionen, die Substitution am Aminstickstoffatom und die sterischen Eigenschaften der Substituenten bestimmt werden. Faktoren, welche die Solvatation der Aminfunktionen verringern, führen zu einer Verringerung der Protonierungskonstanten. Zudem beeinflussen die Zusammensetzung der verwendeten Methanol-Wasser-Gemische sowie das verwendete Leitsalz die Protonierungskonstanten z.T. deutlich. Die Komplexbildung der untersuchten Azapodanden mit Ag+ in Methanol zeigt Unterschiede, welche hauptsächlich auf die unterschiedliche Basizität von Imin- bzw. Aminstickstoffatomen sowie Substituenteneffekte zurückzuführen sind. Von sterisch aufwendigen Substituenten an den Donorfunktionen der Podandarme können zudem destabilisiernde Effekte infolge der Beeinflussung der Koordinationsgeometrie von Ag+ ausgehen. Heteroditope Tetraazacryptanden zeigen gegenüber abgeleiteten offenkettigen Podanden erhöhte Stabilitätskonstanten, wobei auch die Verknüpfungsposition der tripodalen Einheiten am Phenylspacer und die Bindung von Wasser im Käfighohlraum eine Rolle spielen. Lösungsmittelpolarität und Gegenion haben einen deutlichen Einfluß auf die Komplexbildung mit Ag+. Der Schwerpunkt von Untersuchungen an Zweiphasensystemenen wäßrig-organisch lag auf dem Übergang von Wasser in die organische Phase unter dem Einfluß von extrahierten Spezies bei der Kationen- und Anionenextraktion. Mit der Verteilung von Liganden und Kationen- bzw. Anionenkomplexen lassen sich Änderungen des Wassersättigungsgehaltes in der niedrigpolaren organischen Phase registrieren, die mit der unterschiedlichen Hydratation der Spezies korrelieren. Qualitativ wurde die Hydratation von Azapodanden mittels IR- und 1H-NMR-Spektroskopie nachgewiesen, wobei auch Hinweise auf bestimmte, die Hydratation verringernde Faktoren, wie intramolekulare Wasserstoffbrücken, erhalten wurden. Quantitativ konnten mittels Karl-Fischer-Titration und Verteilungsmessungen Hydratationszahlen für ausgewählte Ligansysteme bestimmt werden. Extrahierte Komplexe der Verbindungen mit Ag+, Co2+, Ni2+ und Zn2+ zeigen eine gegenüber den freien Komplexbildnern veränderte Hydratation. Bei Ag+ kann in allen Fällen von einer deutlichen Verringerung der Hydratationszahlen ausgegangen werden. Für die zweifachgeladenen Kationen konnte kein klarer Nachweis erbracht werden. Es ergeben sich aber Hinweise, wonach zum Teil keine Verringerung auftritt, was auf eine zusätzliche Koordinationsstellen von Wasser am Kation hinweist. Bei der Iodidextraktion treten bei gleichzeitiger pH-Abhängigkeit mehrere Komplexspezies auf, was die Bestimmung von Hydratationszahlen erschwert. Als hilfreich erwies sich die Simulation für verschiedene mögliche Zusammensetzungen. Dabei stellte sich heraus, daß der 1:1-Komplex des untersuchten monoprotonierten Aminopodanden in Chloroform wahrscheinlich stärker hydratisiert ist als der freie Ligand, während die entsprechende 1:2-Spezies (Ligand:Iodid) eine ähnliche oder schwächere Hydratation aufweist als der Ligand.

Page generated in 0.359 seconds