Spelling suggestions: "subject:"dionization waves"" "subject:"deionization waves""
1 |
Μελέτη της δημιουργίας και διάδοσης κύματος ιονισμού σε ηλεκτρικές εκκενώσεις που παράγουν ψυχρό πλάσμα: Εφαρμογή στην αλληλεπίδραση πλάσματος-επιφάνειαςΠαπαγεωργίου, Λυμπέρης 27 April 2009 (has links)
Το αντικείμενο της παρούσας εργασίας είναι η θεωρητική μελέτη κυμάτων ιονισμού που παράγονται κατά τη δημιουργία ηλεκτρικών εκκενώσεων ψυχρού πλάσματος. Μια πολύ χαρακτηριστική περίπτωση κύματος ιονισμού είναι ο streamer. Προκειμένου να μελετήσουμε τη συμπεριφορά του, αναπτύξαμε ένα δισδιάστατο αριθμητικό μοντέλο. Σε αυτό το υδροδυναμικό μοντέλο, επιλύθηκαν οι εξισώσεις συνεχείας για τα φορτισμένα σωματίδια της εκκένωσης καθώς και η εξίσωση Poisson για τον υπολογισμό του ηλεκτρικού πεδίου. Εξαιτίας των έντονων βαθμώσεων που εμφανίζονται κατά τη διάδοση του streamer χρησιμοποιήθηκαν εξειδικευμένες αριθμητικές τεχνικές. Το μοντέλο αναπτύχθηκε στα πλαίσια των πεπερασμένων στοιχείων χρησιμοποιώντας διορθωτές ροών για τη ακριβή περιγραφή των όρων μεταφοράς των υπερβολικών διαφορικών εξισώσεων συνέχειας. Το μοντέλο μας επιπλέον συγκρίθηκε και με ένα άλλο μοντέλο βασιζόμενο στους πεπερασμένους όγκους. Η συμφωνία που βρέθηκε μεταξύ των δυο μοντέλων ήταν πολύ καλή.
Ακολούθως, με τη χρήση του προαναφερθέντος μοντέλου, μελετήσαμε το φαινόμενο του streamer, σε σχετικά μικρά (~1cm) μη ομογενή διάκενα. Διεξήχθησαν εξομοιώσεις τόσο στον αέρα όσο και στο άζωτο σε ατμοσφαιρική πίεση. Εξετάσθηκε η επίδραση της ακτίνας καμπυλότητας της ακίδας, η εφαρμοζόμενης τάσης και ο τύπος του αερίου στο κατά πόσο επηρεάζουν τη μορφολογία του streamer καθώς και τις ιδιότητες του κύματος ιονισμού γενικότερα. Τέλος μελετήθηκε και η αλληλεπίδραση του streamer με το υλικό της καθόδου. / The subject of this work is the theoretical study of the ionization waves that are produced and propagate at cold plasmas gas discharges. One of the most characteristic cases of ionization waves is the streamer and in this work it is investigated thoroughly. In order to elucidate the several physical mechanisms that related to the aforementioned phenomenon a two dimensional hydrodynamic numerical model is implemented. On this model the system of continuity equations for the charged species of the discharge (electrons, ions) coupled with the Poisson equation for the calculation of the electric field is solved numerically. Due to the shock character of the streamer special numerical techniques are adopted. The model is developed on the context of finite elements (FE) by using the flux corrected transport (FCT) algorithm for the accurately description of the transport part of continuity equations. Extended numerical tests are performed to validate correct implementation of FE-FCT. Moreover, our streamer model is also compared with an independent one, based on finite volumes (FV) framework, giving very similar results.
By using the numerical model, streamer discharges at relative small, non uniform gaps (point to plane electrodes configuration) are studied. Simulations are performed in atmospheric pressure air and nitrogen. It is examined the influence of the radius of curvature of the tip, the level of applied voltage and the type of the gas, on the morphology of the streamer as well as on the properties of the ionization wave. Special attention is also drawn on the interaction of the streamer with the cathode electrode surface.
|
2 |
Étude expérimentale de micro-plasmas froids à la pression atmosphérique générés par des hautes tensions de formes différentes / Experimental study of atmospheric pressure cold micro-plasmas generated by high voltages of different waveformsGazeli, Kristaq 26 October 2015 (has links)
Cette thèse porte sur l'étude de micro-plasmas froids à la pression atmosphérique générés à partir de différents réacteurs des configurations basées sur le principe des Décharges à Barrière Diélectrique (DBD) et alimentés par des générateurs de tension impulsionnelle et sinusoïdale. Les plasmas sont formés dans des gaz nobles tels que l'hélium et l'argon (gaz vecteurs), et également dans des mélanges réalisés avec des gaz moléculaires tels que l'azote et l'oxygène afin de produire des Espèces Réactives de l’Azote et de l’Oxygène (ERA, ERO). La (ré)activité chimique du plasma est ainsi supposée être accrue, permettant le traitement de matériaux inertes ou vivants pour diverses applications (fonctionnalisation de surfaces, inactivation de cellules, régénération de tissus vivants, etc.). La caractérisation des plasmas étudiés est réalisée en enregistrant les aspects électriques et optiques en fonction des paramètres élémentaires, comme l’amplitude et la fréquence de la tension, le débit du gaz, la configuration des électrodes, et le rapport cyclique dans le cas du régime pulsé. Ainsi, la (ré)activité chimique des plasmas est évaluée tandis que au même temps les mécanismes de la génération des plasmas et les façons de l’optimisation de la chimie sont dévoilées. Finalement, nous examinons l'efficacité du plasma dans le domaine biomédical en traitant divers systèmes biologiques (bactéries, liposomes, cellules) sans effets thermiques. / The present PhD thesis is devoted to the study of atmospheric pressure cold micro-plasmas produced in different Dielectric Barrier Discharge (DBD) reactors which are driven by pulsed or sinusoidal high voltages. Noble gases such as helium and argon are used as carrier gases, whereas admixtures with nitrogen and oxygen are studied as well. The formation of Reactive Nitrogen and Oxygen Species (RNS, ROS) is thus achieved, and the possibility of improving the chemical (re)activity of the plasmas is demonstrated. This is of interest in the treatment of inert or living materials (e.g. surface functionalization, cell inactivation, living tissue regeneration, etc.). Plasmas are characterized by recording electrical and optical features as a function of principal operational parameters, including voltage amplitude and frequency, gas flow rate, electrode configuration, and voltage duty cycle in the case of pulsed waveform. The physico-chemical (re)activity of the plasmas is thus evaluated, while at the same time mechanisms on the plasma generation and paths for chemistry optimization are unveiled. Finally, the efficiency of the plasma in relation to biomedical applications is tested by treating different biological systems (bacteria, liposomes, cells) while preventing any thermal effect.
|
Page generated in 0.092 seconds