• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dépôt de couches minces par plasma froid à pression atmosphérique: application aux dépôts de SiOxCyNzHw et de TiOx

Debrabandere, Delphine 21 December 2011 (has links)
L'objectif de cette thèse est d’étudier l’utilisation des plasmas froids à pression atmosphérique pour déposer des couches minces apportant une valeur ajoutée (protection contre la corrosion, effet autonettoyant ou antibactérien,…) aux produits. Cette recherche se divise en trois parties :caractérisation de l’un des équipements plasma utilisés, dépôts de SiOxCyNzHw et dépôts de TiOx. Ces deux types de couches peuvent apporter un effet barrière contre la corrosion.<p><p>Dans la première partie de ce travail, l’influence de l’ajout d’un gaz réactif (hydrogène ou ammoniac) dans un plasma d’azote généré avec une torche commerciale de type décharge à barrière diélectrique (DBD) est étudiée par spectroscopie d’émission optique et par des mesures simultanées de courant et tension. En particulier, des émissions de CN sont visibles dans les spectres optiques d’un plasma d’azote seul, mais ne le sont plus si un gaz réactif est ajouté. Par contre, avec de l’hydrogène ou de l’ammoniac dans le plasma, la présence de NH est détectée. Quelle que soit la nature du gaz, la décharge est filamentaire. L’ajout d’un gaz réactif permet de réduire la tension à appliquer pour maintenir la décharge.<p><p>Dans la deuxième partie, cette torche est utilisée pour déposer des couches à partir de précurseurs organosiliciés (hexaméthyldisiloxane et hexaméthyldisilazane) par plasma d’azote seul, avec hydrogène ou avec ammoniac dans une cuve industrielle mise sous azote. Diverses géométries d’injection du précurseur sont testées. L’une d’elles est choisie pour étudier les propriétés des dépôts sur de larges surfaces (de silicium pour diverses analyses et d’acier pour évaluer la résistance à la corrosion). Les dépôts par plasma d’azote seul sont de type polysiloxane. Ceux obtenus par plasma d’azote avec hydrogène contiennent moins d’azote et de carbone. Ceux réalisés par plasma d’azote avec ammoniac sont poudreux.<p> <p>Dans la dernière partie, des couches d’oxyde de titane sont déposées à partir d’isopropoxyde de titane avec une torche commerciale radiofréquencée dans l’air ambiant, une décharge à barrière diélectrique à électrodes planes parallèles sous hélium à basse pression développée à l’ULB et la torche utilisée pour les dépôts à base de silicium dans une cuve de laboratoire sous azote. Les couches déposées avec la torche de type DBD sous azote contiennent de l’azote et du carbone contrairement à celles obtenues avec les deux autres installations. Ces essais ont mis en évidence la forte réactivité du précurseur avec l’humidité ambiante.<p><p>Les couches à base de silicium déposées apportent un effet barrière contre la corrosion. La résistance à la corrosion des dépôts d’oxyde de titane n’a pas encore été testée. Toutefois, dans les conditions actuelles, avec les géométries des équipements plasma utilisés, les vitesses de dépôt sont insuffisantes pour des applications en sidérurgie. D’autres géométries devraient être testées pour accroître les vitesses de dépôt.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
2

Étude expérimentale de micro-plasmas froids à la pression atmosphérique générés par des hautes tensions de formes différentes / Experimental study of atmospheric pressure cold micro-plasmas generated by high voltages of different waveforms

Gazeli, Kristaq 26 October 2015 (has links)
Cette thèse porte sur l'étude de micro-plasmas froids à la pression atmosphérique générés à partir de différents réacteurs des configurations basées sur le principe des Décharges à Barrière Diélectrique (DBD) et alimentés par des générateurs de tension impulsionnelle et sinusoïdale. Les plasmas sont formés dans des gaz nobles tels que l'hélium et l'argon (gaz vecteurs), et également dans des mélanges réalisés avec des gaz moléculaires tels que l'azote et l'oxygène afin de produire des Espèces Réactives de l’Azote et de l’Oxygène (ERA, ERO). La (ré)activité chimique du plasma est ainsi supposée être accrue, permettant le traitement de matériaux inertes ou vivants pour diverses applications (fonctionnalisation de surfaces, inactivation de cellules, régénération de tissus vivants, etc.). La caractérisation des plasmas étudiés est réalisée en enregistrant les aspects électriques et optiques en fonction des paramètres élémentaires, comme l’amplitude et la fréquence de la tension, le débit du gaz, la configuration des électrodes, et le rapport cyclique dans le cas du régime pulsé. Ainsi, la (ré)activité chimique des plasmas est évaluée tandis que au même temps les mécanismes de la génération des plasmas et les façons de l’optimisation de la chimie sont dévoilées. Finalement, nous examinons l'efficacité du plasma dans le domaine biomédical en traitant divers systèmes biologiques (bactéries, liposomes, cellules) sans effets thermiques. / The present PhD thesis is devoted to the study of atmospheric pressure cold micro-plasmas produced in different Dielectric Barrier Discharge (DBD) reactors which are driven by pulsed or sinusoidal high voltages. Noble gases such as helium and argon are used as carrier gases, whereas admixtures with nitrogen and oxygen are studied as well. The formation of Reactive Nitrogen and Oxygen Species (RNS, ROS) is thus achieved, and the possibility of improving the chemical (re)activity of the plasmas is demonstrated. This is of interest in the treatment of inert or living materials (e.g. surface functionalization, cell inactivation, living tissue regeneration, etc.). Plasmas are characterized by recording electrical and optical features as a function of principal operational parameters, including voltage amplitude and frequency, gas flow rate, electrode configuration, and voltage duty cycle in the case of pulsed waveform. The physico-chemical (re)activity of the plasmas is thus evaluated, while at the same time mechanisms on the plasma generation and paths for chemistry optimization are unveiled. Finally, the efficiency of the plasma in relation to biomedical applications is tested by treating different biological systems (bacteria, liposomes, cells) while preventing any thermal effect.

Page generated in 0.0911 seconds