Spelling suggestions: "subject:"ions calcium."" "subject:"bons calcium.""
1 |
Régulation du calcium cytosolique et nucléaire par l'endothéline-1 dans les cellules cardiaquesSami Massaad, Danie. January 1999 (has links)
Thèses (M.Sc.)--Université de Sherbrooke (Canada), 1999. / Titre de l'écran-titre (visionné le 20 juin 2006). Publié aussi en version papier.
|
2 |
L'endothéline-1 module le calcium cytosolique et nucléaire ainsi que la prolifération cellulaire et l'apoptose des cellules du muscle lisse aortique humainChoufani, Sanaa. January 2002 (has links)
Thèses (Ph.D.)--Université de Sherbrooke (Canada), 2002. / Titre de l'écran-titre (visionné le 20 juin 2006). Publié aussi en version papier.
|
3 |
Apprendre de données positives et non étiquetées : application à la segmentation et la détection d'évènements calciquesLeclerc, Gabriel 02 February 2024 (has links)
Deux types de neurotransmission se produisent dans les neurones du cerveau : la transmission évoquée et la transmission spontanée. Contrairement à la transmission évoquée, le rôle de la transmission spontanée sur la plasticité synaptique - un mécanisme utilisé pour doter le cerveau de capacités d'apprentissage et de mémorisation - reste incertain. Les neurotransmissions spontanées sont localisées et se produisent aléatoirement dans les synapses des neurones. Lorsqu'un tel événement spontané se produit, ce que l'on appelle un influx synaptique miniature d'ions calcium (miniature Synaptic Ca²⁺ Transient, mSCT), des ions calcium messagers secondaires pénètrent dans la synapse, activant les voies de signalisation en aval de la plasticité synaptique. L'utilisation de l'imagerie calcique du neurone in vitro permet la visualisation spatiotemporelle de l'entrée des ions calcium. Les vidéos calciques qui en résultent permettent une étude quantitative de l'impact du mSCT sur la plasticité synaptique. Cependant, la localisation des mSCTs dans l'imagerie du calcium est difficile en raison de leur petite taille, de leur faible intensité par rapport au bruit de l'imagerie et de leur caractère aléatoire inhérent. Dans ce mémoire, nous présentons une méthode d'analyse quantitative à grande échelle des vidéos d'imagerie calcique limitant la variabilité induite par les interventions humaines pour obtenir des données probantes, dans le but de caractériser l'impact des mSCTs sur la plasticité synaptique. En nous basant sur un outil semi-automatique de détection à seuil d'intensité (Intensity Thresholded Detection, ITD), nous sommes capables de générer des données pour entraîner un réseau pleinement convolutionnel (Fully Convolutional Network, FCN) afin de détecter rapidement et automatiquement les mSCTs à partir de vidéos calciques. En utilisant les segmentations bruitées de l'ITD comme données d'entraînement, combinées à un schéma d'entraînement positif (P) et non étiqueté (Unlabeled, U), les performances du FCN surpassent ITD. Le FCN détecte des mSCTs de faible intensité non détectés auparavant par ITD et offre une segmentation supérieure à ITD. Nous avons ensuite caractérisé l'impact des paramètres PU tels que le nombre de P et le ratio P:U. Le FCN entraîné est intégré dans une routine tout-en-un pour permettre une analyse à grande échelle des mSCTs. La routine offre la détection, la segmentation, la caractérisation et la visualisation des mSCTs ainsi qu'une solution logicielle pour gérer plusieurs vidéos avec différentes métadonnées. / Two types of neurotransmission occur in brain's neurons: evoked transmission and spontaneous transmission. Unlike the former, the role of spontaneous transmission on synaptic plasticity - a mechanism used to endow the brain learning and memory abilities - remain unclear. Spontaneous neurotransmissions are localized and randomly happening in neuron's synapses. When such spontaneous events happen, so-called miniature synaptic Ca²⁺ transients(mSCT), second messenger calcium ions entered the spine, activating downstream signaling pathways of synaptic plasticity. Using calcium imaging of in vitro neuron enable spatiotemporal visualization of the entry of calcium ions. Resulting calcium videos enable quantitative study of mSCT's impact on synaptic plasticity. However, mSCT localization in calcium imaging can be challenging due to their small size, their low intensity compared with the imaging noise and their inherent randomness. In this master's thesis, we present a method for quantitative high-throughput analysis of calcium imaging videos that limits the variability induced by human interventions to obtain evidence for characterizing the impact of mSCTs on synaptic plasticity. Based on a semi-automatic intensity thresholded detection (ITD) tool, we are able to generate data to train a fully convolutional neural network (FCN) to rapidly and automaticaly detect mSCT from calcium videos. Using ITD noisy segmentations as training data combine with a positive and unlabeled (PU) training schema, we leveraged FCN performances and could even detect previously undetected low instensity mSCTs missed by ITD. The FCN also provide better segmentation than ITD. We then characterized the impact of PU parameters such as the number of P and the ratio P:U. The trained FCN is bundled in a all-in-one pipeline to permit a high-thoughtput analysis of mSCT. The pipeline offers detection, segmentation, characterization and visualization of mSCTs as well as a software solution to manage multiple videos with different metadatas.
|
4 |
Le recrutement des canaux de libération du calcium (Ca2+), par la libération du Ca2+ induite par le Ca2+ (LCIC), évalué par l'introduction de 8 mM bapta dans le myoplasme de la fibre musculaire coupée de la grenouilleFénelon, Karine. January 2002 (has links)
Thèses (M.Sc.)--Université de Sherbrooke (Canada), 2002. / Titre de l'écran-titre (visionné le 20 juin 2006). Publié aussi en version papier.
|
5 |
Properties of single calcium-permeable ion channels in neocortical neuronsScheppach, Christian Othmar January 2015 (has links)
No description available.
|
6 |
Ca²+ mechanisms of synaptic integration and plasticity in inhibitory interneuronsCamiré, Olivier 22 October 2019 (has links)
Tableau d'honneur de la FÉSP / La signalisation calcique dendritique joue un rôle important dans la régulation de mécanismes neuronaux, tels que la plasticité synaptique et l’intégration de l’information transmise. Bien compris chez les neurones principaux, ce processus de régulation est moins étudié chez les divers types d’interneurones GABAergiques qui modulent l’acquisition et l’envoi de signaux neuronaux. Chez les interneurones à décharge rapide, un type d’interneurone commun dans les circuits corticaux, il a été démontré qu’il y a absence de rétropropagation des potentiels d’action dans les dendrites distales (Hu et al., 2010). Cette découverte a des implications fonctionnelles, car la rétropropagation des potentiels d’action est un signal important pour l’induction des formes de plasticité synaptique hebbiennes. Par contre, il a été suggéré que l’activité dendritique locale pourrait compenser pour l’absence de rétropropagation des potentiels d’action. En conséquence, ce travail porte sur l’étude des évènements calciques dans les dendrites distales des interneurones à décharge rapide. Nous avons cherché à déterminer s’il est possible de générer ces signaux calciques par stimulation dendritique locale, à étudier les mécanismes responsables de ces signaux et à déterminer si ces signaux jouent un rôle dans la régulation de la plasticité synaptique à ces synapses. Pour atteindre ces objectifs, nous avons utilisé une combinaison de méthodes électrophysiologiqes (patch-clamp en mode cellule entière), d’imagerie calcique deux-photons et de modélisation computationnelle. Nous avons pu établir qu’il est possible de générer des évènements calciques postsynaptiques supralinéaires dans les synapses excitatrices étudiées par stimulation électrique locale. Ces signaux sont médiés par l’influx calcique provenant de l’activation des récepteurs AMPA perméables au Ca2+, qui déclenche à son tour le relâchement de Ca2+ par les récepteurs ryanodine présents sur réserves calciques intracellulaires. Ces signaux comprennent aussi une contribution calcique mineure des récepteurs NMDA, et ils restent locaux (pas de propagation dans l’arbre dendritique). De plus, nous avons déterminé que ces évènements calciques supralinéaires produisent un revirement de la plasticité synaptique, car ils induisent la dépression à long-terme dans les synapses étudiées, alors que les signaux calciques de basse amplitude induisent la potentiation à long-terme. Nous avons aussi examiné si ces évènements calciques supralinéaires étaient générés de façon équivalente dans les dendrites apicales et basales, qui reçoivent des synapses de différentes sources. Nous avons observé que les signaux des dendrites apicales avaient une plus grande amplitude et étaient associés à un plus haut niveau de dépolarisation. À partir de la modélisation, nous avons pu prédire le nombre de synapses nécessaires à la génération de ces signaux et la contribution potentielle des mécanismes d’extrusion du Ca2+. Finalement, nous avons étudié la spécificité cellulaire des mécanismes d’intégration dendritique en combinant l’imagerie calcique et la modélisation dans un type différent d’interneurone, les interneurones spécifiques aux interneurones type III. En conclusion, nous avons prouvé qu’il existe dans certains interneurones des mécanismes alternatifs, médiés par des hausses de Ca2+ locales, permettant la régulation de la plasticité aux synapses excitatrices. / Dendritic Ca2+ signaling plays an important role in the regulation of neuronal processes, such as synaptic plasticity and input integration. Well-studied in principal neurons, this form of regulation is not well understood in the various types of GABAergic interneurons that modulate activity in neuronal networks. In fastspiking (FS) interneurons, a common interneuron type in cortical circuits, it has been shown that there is a lack of action potential (AP) backpropagation in distal dendrites (Hu et al., 2010). This discovery has functional implications, AP backpropagation is an important signal for the induction of Hebbian forms of synaptic plasticity. However, it has been suggested that local dendritic activity could compensate for the absence of AP backpropagation. Consequently, this work focuses on the study of Ca2+ transients in distal dendrites of FS interneurons. We sought to determine whether it is possible to generate supralinear Ca2+ transients through local dendritic stimulation, to study the mechanisms responsible for those transients and to determine whether those signals play a role in the regulation of synaptic plasticity at those synapses. To reach those objectives, we used a combination of electrophysiological methods (whole-cell patch-clamp recordings), two-photon Ca2+ imaging and of computational modeling. We were able to establish that supralinear postsynaptic Ca2+ transients can be generated through local electrical stimulation of excitatory synapses in distal dendrites. These Ca2+ transients were mediated by Ca2+ influx from the activation of Ca2+-permeable AMPA receptors, which triggers Ca2+ release through ryanodine receptors present on intracellular Ca2+ stores (Ca2+-induced Ca2+ release). These Ca2+ signals also contain a minor contribution from NMDA receptors, and stay localized (no significant propagation in the dendritic arbor). In addition, we determined that these supralinear Ca2+ signals constitute a switch in the expression of synaptic plasticity, as they induce long-term depression in local synapses, while low-amplitude Ca2+ signals induced synaptic long-term potentiation. We also examined whether these supralinear Ca2+ transients were generated in both apical and basal dendrites, which receive synaptic contacts from different sources (Schaffer collaterals vs local collaterals). We observed that Ca2+ transients in apical dendrites had a higher amplitude and were associated with a higher level of somatic depolarization. We were also able to predict, through computational modeling, the number of synapses necessary to the generation of those signals and the potential contribution of Ca2+ extrusion mechanisms. Finally, we studied the cell-specificity of dendritic integration mechanisms by combining Ca2+ imaging and modeling in a different interneuron type, interneuron-specific interneurons type III. In conclusion, we were able to prove that certain interneurons possess alternative mechanisms, mediated through local Ca2+ transients, that allow for the regulation of plasticity at excitatory synapses.
|
7 |
Bacteriophage SPP1 entry into the host cell / Entrée de bactériophage SPP1 dans la cellule hôteJakutyte, Lina 15 December 2011 (has links)
Les quatre étapes principales d'infection des bactéries par leurs virus sont (i) la reconnaissance spécifique de la cellule hôte et l'entrée du génome dans le cytoplasme,(ii) la réplication du génome viral, (iii) l'assemblage des particules virales, et (iv) leur relâchement, menant dans la plupart des cas à la lyse de la cellule. Bien que la description des étapes individuelles du cycle viral a été relativement bien établie, les détails de comment d'ADN viral chemine du virion jusqu’au cytoplasme de la bactérie hôte et de comment l'environnement cellulaire participe au processus restent mal compris.La première étape de l’infection est la reconnaissance d’un récepteur à la surface de la bactérie hôte par la machinerie d’adsorption du phage. Les barrières que l’agent infectieux doit franchir par la suite sont la membrane externe de la bactérie Gram-negative, la paroi cellulaire et la membrane cytoplasmique. Ceci implique une dégradation localisée de la paroi et le cheminement de l’ADN à travers un pore dans la membrane. L‘ADN linéaire se circularise normalement dans le cytoplasme et il est répliqué par la suite. On a utilisé le bactériophage SPP1 qui infecte la bactérie Gram-positive Bacillus subtilis comme modèle d’étude pour disséquer ces différentes étapes clés pour le démarrage de l’infection virale. Dans ce travail de thèse les conditions d’infection et d’acquisition de données pour suivre en temps réel la dépolarisation de la membrane cellulaire de B. subtilis lors de l’infection par SPP1 ont été mis au point. Il est montré que le démarrage de l’infection déclenche une dépolarisation très rapide de la membrane cytoplasmique.Le potentiel de membrane n’est plus rétablit pendant toute la durée du cycle d'infection. Ce changement du potentiel de membrane au début de l’infection dépend de la présence du récepteur YueB. L’amplitude de la dépolarisation dépend du nombre de particules virales infectieuses présentes et de la concentration du récepteur YueB à la surface de la bactérie hôte. L’interaction du phage avec le récepteur YueB conduit à l’interaction irréversible et à l'éjection de l’ADN de SPP1. Pour établir si c’est l’interaction avec YueB ou le début de l’entrée de l’ADN qui conduit à la dépolarisation de la membrane on a utilisé des phages SPP1 éclates par EDTA qui adsorbent normalement à B. subtilis mais qui n’avaient plus leur ADN. Les résultats obtenus ont montré que la dépolarisation requiert l’interaction du virus intacte avec le récepteur YueB. Des concentrations sous-millimolaire de Ca2+ sont nécessaires et suffisantes pour SPP1 liaison réversible à l'enveloppe d'hôte et donc de déclencher la dépolarisation.La cinétique d’entrée de l’ADN du bactériophage SPP1 dans la bactérie Bacillus subtilis a été suivie en temps réel par microscopie de fluorescence. On a mis au point une méthode de microscopie pour visualiser des particules virales marquées avec des «quantum dots» ce qui permit de démontrer que ces particules se fixent préférentiellement aux pôles des bacilli. L’immuno-marquage du récepteur de SPP1,la protéine YueB, a montré que celle-ci a une organisation ponctuée à la surface de B.subtilis et se concentre particulièrement aux extrémités de la bactérie. Cette localisation particulière du phage sur la surface de la cellule hôte corrèle avec l’observation que l’ADN viral rentre dans le cytoplasme (<2 min) et se réplique dans des foci situés dans la plupart des cas à proximité des pôles de B. subtilis. L’étude spatio-temporelle de l’interaction de SPP1 avec son hôte Gram-positive montre que le virus cible des régions spécifiques de la bactérie pour son entrée et pour sa réplication. Transfert d'ADN dans le cytoplasme dépend des concentrations millimolaires de Ca2+. Un modèle décrivant les événements précoces de l'infection bactériophage SPP1 est présenté. / The four main steps of bacterial viruses (bacteriophages) lytic infection are (i) specific recognition and genome entry into the host bacterium, (ii) replication of the viral genome, (iii) assembly of viral particles, and (iv) their release, leading in most cases to cell lysis. Although the course of individual steps of the viral infection cycle has been relatively well established, the details of how viral DNA transits from the virion to the host cytoplasm and of how the cellular environment catalyzes and possibly organizes the entire process remain poorly understood.Tailed bacteriophages are by far the most abundant viruses that infect Eubacteria. The first event in their infection is recognition of a receptor on the surface of host bacterium by the phage adsorption machinery. The barriers that the infectious particle overcomes subsequently are the cell wall and the cytoplasmic membrane of bacteria. This implies a localized degradation of the wall and the flow of its double stranded DNA (dsDNA) through a hydrophilic pore in the membrane. The lineards DNA molecule is most frequently circularized in the cytoplasm followed by its replication. In this study we used bacteriophage SPP1 that infects the Gram-positive bacterium Bacillus subtilis as a model system to dissect the different steps leading to transfer of the phage genome from the viral capsid to the host cell cytoplasm.normally to B. subtilis but do not trigger depolarization of the CM. Attachment of intact SPP1 particles is thus required for phage-induced depolarization.The beginning of B. subtilis infection by bacteriophage SPP1 was followed inspace and time. The position of SPP1 binding at the cell surface was imaged by fluorescence microscopy using virus particles labeled with "quantum dots". We found that SPP1 reversible adsorption occurs preferentially at the cell poles. This initial binding facilitates irreversible adsorption to the SPP1 phage receptor protein YueB,which is encoded by a putative type VII secretion system gene cluster.Immunostaining and YueB – GFP fusion showed that the phage receptor protein YueB is found over the entire cell surface. It concentrates at the bacterial poles too,and displays a punctate distribution over the sidewalls. The dynamics of SPP1 DNA entry and replication was visualised in real time by assaying specific binding of a fluorescent protein to tandem sequences present in the SPP1 genome. During infection, most of the infecting phages DNA entered and replicated near the bacterial poles in a defined focus. Therefore, SPP1 assembles a replication factory at a specific location in the host cell cytoplasm. DNA delivery to the cytoplasm depends on millimolar concentrations of Ca2+ allowing uncoupling it from the precedent steps of SPP1 adsorption to the cell envelope and CM depolarization that require only micromolar amounts of this divalent cation. A model describing the early events of bacteriophage SPP1 infection is presented.
|
Page generated in 0.0488 seconds