• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 12
  • 10
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 60
  • 60
  • 24
  • 21
  • 20
  • 19
  • 14
  • 13
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The pancreatic renin-angiotensin system: its roles in pancreatic islets and in type 2 diabetes. / CUHK electronic theses & dissertations collection

January 2008 (has links)
In the first study, I aimed to compare the angiotensin II type 1 receptor (AT1R) expression levels of the isolated pancreatic islets from normal and mouse model of T2DM. In addition, 4-week-old diabetic mice were orally treated with AT1R antagonist losartan for 8 weeks. It is found that AT1R mRNA was upregulated markedly in diabetic islets and double-immunolabeling confirmed that AT1R was localized to beta-cells. Losartan selectively improved glucose-induced insulin release and (pro)insulin biosynthesis in diabetic islets. Oral losartan treatment delayed the onset of diabetes, and reduced hyperglycemia and glucose intolerance in diabetic mice. These data indicate that AT1R antagonism improves beta-cell function and glucose tolerance in young T2DM mice. / In the second study, I aimed to examine how the upregulated RAS could impair beta-cell function, where oxidative stress is the potential mediator. Meanwhile, T2DM results in oxidative stress-mediated activation of uncoupling protein 2 (UCP2), a negative regulator of islet function. Thus, it was postulated that some of the protective effects of AT1R antagonism might be mediated through interference with this pathway and tested this hypothesis in a mouse model of T2DM. In order to achieve this, losartan was given to 4-week-old diabetic mice for 8 weeks. UCP2-driven oxidative damage and apoptosis were analyzed in isolated islets. Results showed that losartan selectively inhibited oxidative stress via NADPH oxidase downregulation; this in turn suppressed UCP2 expression, thus improving beta-cell insulin secretion while decreasing apoptosis-induced beta-cell mass loss in diabetic mice islets. These data indicate that islet AT1R activation in young diabetic mice can lead to progressive islet beta-cell failure through UCP2-driven oxidative damage and apoptosis. / The mechanisms by which chronic hyperglycemia associated with glucotoxicity causes beta-cell dysfunction and apoptosis remain ambiguous. Voltage-gated outward potassium (Kv) current, which mediates beta-cell membrane potential and limits insulin secretion, could play a role in glucotoxicity. Meanwhile the RAS has been shown to be upregulated by prolonged exposure to high glucose. In the third part of my study, I therefore investigated the effects of prolonged exposure to high glucose and angiotensin II (Ang II) on the expression and activity of Kv channels in mouse pancreatic beta-cell. Dissociated mice beta-cells, incubated in 5.6 mM or 28 mM glucose for 3-5 days, were used for electrophysiological study; while isolated islets cultured for 1-7 days were proceeded for gene/protein expression analysis. Both Kv channel expression and current were markedly increased by prolonged glucose incubation. Simultaneously, Ang II reduced Kv current under normal glucose condition, while high glucose incubation abolished the effect of Ang II. Moreover, the ability of Ang II on Kv current reduction was eliminated by inhibiting AT2R but not AT1R. These data indicated that Ang II reduced Kv current via AT2R, which was abolished by prolonged high glucose incubation. On the other hand, high glucose increased Kv channel expression and current, which might alter the ability of insulin secretion in beta-cell. (Abstract shortened by UMI.) / Chu, Kwan Yi. / Adviser: P. S. Leung. / Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3246. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 163-188). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
52

Autopsy study of islet amyloidosis and diabetic glomerulopathy in relation to candidate genetic markers. / 胰島淀粉样变性和糖尿病肾小球病的遗传标志研究 / CUHK electronic theses & dissertations collection / Yi dao dian fen yang bian xing he tang niao bing shen xiao qiu bing de yi chuan biao zhi yan jiu

January 2010 (has links)
BACKGROUND AND OBJECTIVES: Type 2 diabetes mellitus (T2DM) is a complex disease with genetic predisposition and histopathological characterization. Pancreatic islet amyloidosis, hyaline arteriolosclerosis, and diabetic glomerulopathy are histopathological hallmarks of T2DM at autopsy examination. The associations of genetic variants with diabetic amyloidosis, arteriosclerosis and glomerulopathy have not been fully elucidated. Several candidate genes including apolipoprotein E (ApoE), insulin degrading-enzyme (IDE) and glucose transporter-1 ( GLUT1) have been reported to increase risk of T2DM in human studies although results are not always consistent. Capitalizing on the pathological hallmarks of T2DM, I used autopsy specimens to investigate the risk associations of polymorphisms of ApoE (rs429358 and rs7412), IDE (rs6583813) and GLUT1 (rs710218) genes with clinical features and specific pathological changes in diabetic kidney and pancreas. I further explored the mechanisms of these associations by evaluating the histopathological changes and protein expression in pancreas and kidney. / CONCLUSIONS: These findings suggest that genetic factors have important effects in the development of tissue-specific changes and chronic complications in T2DM. Islet amyloidosis, arteriosclerosis and glomerulosclerosis in T2DM may share common pathogenetic processes as suggested by the coexistence of chaperone proteins, amyloid P and ApoE. Genetic--pathologic correlation studies are useful in advancing our understanding of the mechanisms of complex diseases such as T2DM. / METHODS AND MATERIALS: Genomic DNA was extracted from white blood cell-concentrated paraffin embedded formalin fixed spleen tissues. Genotyping for ApoE, IDE and GLUT1 polymorphisms was determined by polymerase chain reaction (PCR) and ligase detection reaction (LDR). The pathological changes were blindly assessed in pancreatic and kidney tissues of autopsy specimens. Protein expression of these genes was examined by immunostaining and quantified by using Metamorph image analysis system. / RESULTS: In a consecutive study population of 3693 autopsy specimens containing 328 T2DM and 209 control cases, the respective frequencies of genotypes were as follows: 1) TT of GLUT1 rs710218: 11.2% vs. 11.3%; 2) ApoE epsilon2: 19.4% vs. 10.9%; 3) ApoE epsilon4: 12.1% vs. 9.1% and 4) C carriers of IDE rs6583813: 51.2% vs. 47.9%. The key genotype-phenotype correlations were as follows. 1) In the T2DM cases, GLUT1 rs710218 IT genotype carriers (0% in TT genotype vs. 59.1% in AA genotype, P=0.0407) were less likely but ApoE epsilon 2 allele carriers (57.1% in epsilon2 allele carriers vs. 23.5% in epsilon3 allele carriers P=0.0382) were more likely to have diabetic glomerular hypertrophy than referential group. ApoE epsilon2 carriers showed increased glomerular ApoE protein expression with the immunoreactivity found mainly in the mesangial regions and nodular lesions. On the other hand, ApoE epsilon 3/epsilon4 cases had diffuse ApoE expression in glomerular capillaries. 2) ApoE epsilon4 carriers were more likely to have islet amyloidosis than non-carriers (62.5% in epsilon4 allele carriers vs. 23.6% in epsilon 3 allele carriers P=0.0232). There was immunolocalization of the chaperone proteins, amyloid P and ApoE in both islet amyloid deposits and arterial walls with hyaline arteriolosclerosis. 3) In T2DM cases, IDE rs6583813 C allele carriers had higher prevalence of vascular disorders [hypertension (67.4% vs. 43.6%, P=0.0332), death due to cardiovascular disease (58.1% vs. 25.6%, P=0.0479) and cerebral vascular accident (CVA) (20.9% vs. 2.4%, P=0.0412)1 than T allele carriers. / Guan, Jing. / Adviser: Chan Chung Ngor Juliana. / Source: Dissertation Abstracts International, Volume: 73-02, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 175-192). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
53

Mechanisms underlying diabetogenesis in the NOD mouse

Gregg, Randal K., January 2003 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2003. / Typescript. Vita. Includes bibliographical references (leaves 146-172). Also available on the Internet.
54

Participação das proteínas AS160 e Rab27A na secreção de insulina de ratos controles e insulino-resistentes por dexametasona / Participation of protein AS160 and Rab 27A in insulin secretion in control rats and insulin-resistant by dexamethasone

Purificação, Thais Almeida, 1980- 20 August 2018 (has links)
Orientadores: Antonio Carlos Boschiero, Alex Rafacho / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-20T10:53:44Z (GMT). No. of bitstreams: 1 Purificacao_ThaisAlmeida_M.pdf: 1255549 bytes, checksum: 5142cacf6ca932aa0dd1a86b9eef5074 (MD5) Previous issue date: 2012 / Resumo: Administração de glicocorticóides em roedores e humanos aumenta a resistência à insulina (RI). A RI, provocada por dexametasona, leva a hiperinsulinemia por aumento da secreção do hormônio pelas ilhotas pancreáticas. Recentemente, demonstrou-se que a AS160, uma GAP (proteína ativadora de GTPase), participa no tráfego de vesículas em diferentes tipos celulares que, por sua vez, pode ser alterado por dexametasona. Neste trabalho, avaliamos possível participação da AS160 na secreção de insulina em ilhotas de ratos RI por dexametasona, para isto foram avaliadas proteínas envolvidas no processo de secreção; pAS160, Akt e AMPK. Ratos Wistar adultos foram tratados com o glicocorticóide (DEX) com 1mg/kg (ip) de peso corporal, ou salina (CTL), durante 5 dias. Ao final do período de tratamento, os ratos foram submetidos a um Teste de Tolerância à Glicose intraperitoneal (ipGTT) e, após sacrifício, amostras de sangue foram coletadas para dosagem de insulina. As ilhotas pancreáticas foram isoladas por digestão do pâncreas com colagenase. As proteínas insulares foram avaliadas por Western Blot e os genes por RCP-TR. A insulina, contida nas amostras de sangue e nas incubações de ilhotas, foi medida por radioimunoensaio (RIA). A razão pAS160/AS160 foi aumentada nas ilhotas DEX (P<0,05). Nestas ilhotas, resultados semelhantes foram observados para a razão pAkt/Akt (P<0,05). O tratamento com DEX também aumentou a expressão gênica e protéica da Rab27A (P<0,05), contudo, reduziu significativamente sua associação com a AS160 (P<0,05). A associação entre essas duas proteínas foi observada pela primeira vez nas ilhotas neste trabalho. O tratamento com DEX também reduziu as expressões gênica e protéica bem como a fosforilação da AMPK. A secreção de insulina foi maior nas ilhotas DEX comparado à CTL e, em ambas, a secreção foi diminuída pela wortmanina (inibidor da PI3K). Ilhotas de ratos CTL e DEX, tratados com anti-sense anti-AS160, tiveram o conteúdo protéico da AS160 reduzido em ± 80%, comparado ao CTL (P<0,05). Nas ilhotas de ratos CTL knockdown, a secreção de insulina foi maior que nos CTL e, nas ilhotas dos DEX knockdown a secreção foi semelhante às DEX. Concluindo, o aumento da secreção de insulina em ilhotas de ratos RI por dexametasona envolve a participação da AS160 e, essa potencialização parece ser mediada pela via PI3K/Akt. Esse aumento de secreção parece também ser diretamente proporcional ao aumento da dissociação entre a Rab27A e a AS160 / Abstract: It is well known that glucocorticoids induce insulin resistance (IR). It is also known that dexamethasone-induced IR is linked to increased levels of plasma insulin due to higher insulin secretion by pancreatic islets. Recent findings show that the Rab-GTPase AS160 plays a role in the traffic of vesicles in different cells type that, in turn, may be affected by dexamethasone. Here, we evaluated the participation of AS160 in the insulin secretion in islets from dexamethasone treated rats. Adult rats were treated with dexamethasone (DEX) with 1.0 mg/kg, body weight (ip) or saline (CTL) for 5 consecutive days. Insulin resistance was evaluated by intraperitoneal Glucose Tolerance Test (ipGTT). After, the rats were sacrificed and the islets isolated by the digestion of their pancreases with collagenase. Protein was measured by Western- Blot, and insulin by RIA. AS160 expression, phosphorylation, and the pAS160/AS160 ratio were increased in DEX islets (P<0.05). Similar results were observed for Akt (P<0.05). Dexamethasone also increased Rab27a protein and gene expression but significantly reduced its association with AS160. The association between these two proteins was observed in pancreatic islets for the first time in this work. AMPK gene and protein expression as well as phosphorylation were reduced by Dexamethasone (P<0.05). The insulin secretion was higher in DEX compared with CTL islets (P<0.05). Both secretions were reduced by wortmanin. Islets from CTL and DEX rats, treated with anti-sense anti-AS160, showed ± 80% reduction on its expression. The CTL knockdown islets secreted more insulin than CTL and the DEX knockdown secreted similar amount of insulin than DEX islets. In conclusion, these results indicated that AS160 participates in the increased insulin secretion in islets from DEX rats, and this effect seems to be dependent on the activation of the PI3K/Akt pathway. The increase in insulin secretion also depends on the dissociation between Rab27a and AS160 / Mestrado / Fisiologia / Mestre em Biologia Funcional e Molecular
55

Potential roles of angiotensin ii, glucagon like peptide-1 and vitamin D systems in pancreatic islet function. / CUHK electronic theses & dissertations collection

January 2010 (has links)
胰腺的胰島具有重要的生理功能,表現在系列的荷爾蒙,特別是能夠控制血糖穩態的胰島素的合成和分泌。胰島素的功能受到各種分子信號及環境的調節。在過去的十年裡,腎素血管緊張素系統(RAS)被發現除了調節血壓和體液穩態之外還具有局部性的生理功能。根據我們最近的發現,胰島存在自有的腎素血管緊張素系統並且可能在胰島生理作用和糖尿病方面發揮新穎的作用。同時,越來越多的研究發現一些與臨床相闊的調節因子在胰島的功能和糖尿病中起著關鍵的作用。這些調節因子促進胰島素分泌並且可以調節胰島細胞的生長和凋亡。其中一些調節因子顯示出極大的研究價值。胰高血糖素樣肽-1(GLP-1)能通過它在胰島上的受體改善胰島的功能和血糖的控制;另一方面, 維生素D 也可以通過它在胰島B細胞上的受體來起到調節胰島素分泌及控制糖尿病的作用。像胰島局部RAS一樣, GLP-1 和維生素D 都可以通過它們在同一個靶器官--胰島細胞上的受體來發揮它們的功能。因此,不難想象這三種調節因子之前具有潛在的聯系並且直接或間接地影響胰島功能。此研究可以分為三部分以闡述這三種調節因子在胰島上的新穎作用(1) GLP-l 和RAS 在胰島功能上的潛在協同作用; (2)維生素D 對於胰島RAS 表達的調節作用及對膜島功能的影響;(3) 維生素D 缺乏下的胰島RAS 表達以及胰島功能的改變。 / 在第一部分的研究裡,我們檢測了阻斷血管緊張素一型受體(纈沙坦)和增強GLP-l 作用(DPPIV 抑制劑LAF237) 的復合效應對二型糖尿病小鼠(db/db) 血糖控制和胰島功能方面的影響。我們比較了接受單一給藥和聯合給藥的db/db 小鼠的胰島功能。所有的藥物處理都改善了db/db 小鼠的血糖穩態,而聯合給藥組在增加胰島B細胞面積,減少細胞凋亡,促進增殖以及降低膜島氧化應激和膜島纖維化方面體現出復合效應。另外,短期的聯合給藥顯著促進分離出來的胰島細胞的胰島素分泌。這些結果顯示了血管緊張素型受體阻斷劑和DPPIV 抑制劑在改善胰島的結構與功能以及治療二型糖尿病方面具有復合效應。 / 據研究,維生素D 是種具有抗糖尿病和高血壓作用的荷爾蒙,而不適合的RAS活性能夠減少胰島功能和糖耐量。維生素D 對腎臟腎素的直接抑制作用表明維生素D 可能可以調節胰島得局部RAS 活性進而調節胰島的生理作用。因此第二部分的實驗旨在研究維生素D 是否能夠抑制分離培養的胰島中非正常表達的胰島局部RAS組分並且改善胰島且細胞功能。維生素D 受體存在於胰島且細胞的核與質中,計量依賴性地調節受體對活性維他命D-骨化三醇的反應。骨化三醇的刺激可以通過增加維生素D24羥化黣激發胰島局部維他命D 系統的反饋機制。在分離的胰島中,長期處於高糖的環境,胰島局部RAS 的異常表達可以一定濃度的骨化三醇治療和預防。然而,骨化三醇的送科治療效果,並沒有在生理正常糖濃度的情況下被發現。另外,在高糖環境下,骨化三醇增加胰島素前體合成以及葡萄糖刺激的服島素分泌。這些結果顯示骨化三醇能夠調節以及保護高糖環境引起的異常胰島RAS 組分表達並通過增加胰島素的合成與分泌來改善胰島的功能,為在高血糖和糖尿病情況下的維生素D 與胰島功能關系提供了新的機制。 / 循環中的維生素D 水平與血糖濃度以及糖尿病的患病風險成反比。第二部分的實驗結果現實了維生素D 具有潛在的調節胰島RAS 進而調節胰島功能的作用。因此,在第三部分的實驗裡,我們假設不充足的維生素D 水平可能引起異常的胰島RAS 表達進而引起胰島功能障薇。為了這個目的,我們使用了維生素D 受體缺失的基因敲除小鼠和維生素D 缺乏小鼠來檢測糖代謝,膜島形態以及局部RAS 組分的表達。結果顯示,在缺乏維生素D 以及正常的維生素D 作用的情況下,胰島局部RAS 組分異常表達。而這個維生素D 導致的RAS 異常表達的作用可能發生在高血糖現象之前,從而導致了胰島功能障礙,異常的糖代謝以及減弱的胰島且細胞本身的胰島素作用。這些結果為在生理情況下,維生素D 可以通過調節胰島局部RAS 的表達進而調節胰島功能提供了有力的支持。 / 總括來說,胰島局部RAS 在持續高糖環境下的胰島功能中有著關鍵的作用。GLP-l 和維生素D 都與胰島RAS 具有潛在的生物相關性並可以影響RAS 的表達,進而調節胰島功能和自細胞體積。我們的實驗數據顯示了這三種調節系統共同作用並調節目突島細胞功能以及血糖穩態,進一步提議了它們在二型糖尿病治療中的價值。 / Pancreatic islets perfonn critical biological activities by means of synthesizing and releasing islet peptide honnones, notably insulin that controls our glucose homeostasis. The insulin secretory function is, in turn, governed by various conditions and signaling molecules. In the past decade, it is recognized that the renin-angiotensin system (RAS) has local function rather than the maintenance of blood pressure and fluid homeostasis. With our recent recognition of an islet RAS, it is believed that it has novel roles in islet physiology and diabetes. Meanwhile, more and more clinically relevant regulators that have pivotal roles in islet function and diabetes have been well investigated; such regulators have positive action on insulin secretion, B-cell replication and cell apoptosis/proliferation balance. Of great interest in this context is the glucagon-like peptide I (GLP-I) that improves islet function and glycemic control via its islet specific receptors located on the islets. On the other hand,vitamin D also regulates islet insulin secretion and diabetes via its mediation of receptors on islet B-cells. Like islet RAS, GLPI and vitamin D exert their biological effects via mediation of respective receptors located on the common target, i.e. the islet beta-cells. As such, it is plausible to propose that all these three regulators have potential interactions so as to affect islet functions in a direct or an indirect manner. Accordingly, the primary objective of this study is to examine the potential roles oflocal RAS, GLP-I and vitamin D system in pancreatic islet function. The present study is thus divided into three main parts addressing the issues of these three novel regulators in islet function: (1) the potential synergism of GLP-I and RAS in islet function; (2) the modulatory effects of vitamin D on islet RAS expression and function; (3) The altered islet RAS and islet function under a hypovitaminosis D condition. / In the first part of our study, we examined the combined effect of blocking islet A Tl receptor (ATl receptor blocker: valsartan) and enhancing GLP-l actions (DPP IV inhibitor: LAF237) on islet function and glycemic control in a mouse model with type 2 diabetes, db/db mice. We compared the islet function in db/db mice with either valsartan or LAF237 mono treatment or combined treatment. Consistently, all these treatments improved glucose homeostasis in db/db mice while combined treatment resulted in a significant increase in islet B-cell area by decreasing cell apoptosis and increasing proliferation, together with marked decreases of islet oxidative stress and fibrosis. In addition, a short-term effect on stimulating insulin secretion was also observed in isolated islets with combined treatment. These results indicate that the combination treatments with ATl receptor blocker and DPP IV inhibitor has beneficial additive effects on islet structure and function in type 2 diabetes, compared with their monotherapeutic treatments. / It is reported that vitamin D is a hormone with anti-diabetic and anti-hypertension effects in human while inappropriate RAS activity has been known to reduce islet function and glucose tolerance. The direct suppressive effect of vitamin D on renal renin activity indicates vitamin D may acts as a regulator in RAS activity thus modulate islet physiology. In the second part of our study, it was aimed to study whether vitamin D vitamin D downregulation of abnormal islet RAS activity improves B-cell function using an isolated pancreatic islet model. VDR was localized in islet B-cell nuclei and cytoplasm, mediated responses to active form of vitamin D calcitriol in a dose-dependent manner. This islet local vitamin D system may have its own feedback system as a marked increase ofCYP24 transcription was triggered by calcitriol stimulation. In isolated islets exposed to prolonged high glucose environment, abnormal expressed islet RAS components could be reversed or protected by calcitriol at a specific concentration. However, the inhibition effect of calcitriol on islet RAS were not observed at physiological glucose concentrations. In additon, calcitriol increased islet proinsulin synthesis and insulin secretion with hyperglycemia. These results indicated that calcitriol modulate or protect the abnormal isolated islet RAS component expression against hyperglycemia and improve islet function via increasing insulin synthesis and secretion, which might provide an alternative mechanism by which vitamin D availability enhances islet function in hyperglycemia or diabetes. / The circulating vitamin D level is inversely related to blood glucose level and risks of diabetes. Results in the second part of experiments suggested the potential RAS modulatory effect of vitamin D in isolated islets Therefore, in the third part of our study, we hypothesize that the insufficient vitamin D levels may lead to the inappropriate regulation of islet RAS expression and thus result in islet dysfunction. To achieve this, we examined the potential islet RAS-mediated effect of vitamin D on islet function by accessmg glucose homeostasis, islet histomorphology, and local RAS expression and function by means of using a vitamin D receptor knockout and diet-induced vitamin D deficiency mouse models. Results showed that the islet RAS components were abnormally expressed when lacking a sufficient vitamin D level and normal vitamin D action. These observed effects of insufficient vitamin D might occur prior to onset of hyperglycemia thus modulating islet RAS expression, which in turn lead to islet failure and dysfunctional glucose homeostasis, together with decreased insulin actions in islet B-cells. These results provide supports for the view that vitamin D physiologically exerts modulatory effects on islet function by downregulating islet RAS expression and function. / In summary, islet local RAS may have a central role in islet function under prolonged hyperglycemic stress. GLP-l and vitamin D have biological interactions with the islet RAS by downregulation of its expression and function, thereby affecting islet cell function and cell mass. Our data indicate that all three regulators work together in the regulation of pancreatic islet B-cell functions and glucose homeostasis, further suggestive of their potential values in the treatment of type 2 diabetes. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Cheng, Qianni. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves [205]-243). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstract --- p.i / 摘要 --- p.v / Acknowledgements --- p.viii / List of Publications --- p.x / Table of Contents --- p.xii / List of Abbreviations --- p.xvi / Chapter Chapter 1 --- General Introduction --- p.1 / Chapter 1.1 --- Endocrine Pancreas --- p.2 / Chapter 1.1.1 --- The structure and composition of endocrine pancreas --- p.3 / Chapter 1.1.2 --- Functions of endocrine pancreas --- p.4 / Chapter 1.1.3 --- Insulin structure and insulin receptors --- p.8 / Chapter 1.1.4 --- Mechanisms of insulin secretion --- p.11 / Chapter 1.1.5 --- Mechanisms of insulin actions --- p.18 / Chapter 1.1.6 --- Disorders of the endocrine pancreas --- p.22 / Chapter 1.2 --- Diabetes mellitus --- p.23 / Chapter 1.2.1 --- Type 1 diabetes mellitus (TlDM) --- p.24 / Chapter 1.2.2 --- Type 2 diabetes mellitus (T2DM) --- p.26 / Chapter 1.2.3 --- Other types of diabetes mellitus --- p.29 / Chapter 1.2.4 --- Islet dysfunction and T2DM --- p.30 / Chapter 1.3 --- Renin-angiotensin system (RAS) --- p.33 / Chapter 1.3.1 --- Components ofRAS --- p.33 / Chapter 1.3.2 --- Tissue local RAS --- p.42 / Chapter 1.3.3 --- Pancreatic local RAS --- p.43 / Chapter 1.4 --- Glucagon like peptide-l (GLP-l) and pancreatic islet function --- p.54 / Chapter 1.4.1 --- Gastrointestinal incretin honnones --- p.54 / Chapter 1.4.2 --- GLP-l and pancreatic islet function --- p.56 / Chapter 1.4.3 --- Incretin based therapies for T2DM --- p.59 / Chapter 1.4.4 --- GLP-lIRAS axis and pancreatic islet function --- p.62 / Chapter 1.5 --- Vitamin D and pancreatic islet function --- p.64 / Chapter 1.5.1 --- Vitamin D synthesis and metabolism --- p.65 / Chapter 1.5.2 --- Vitamin D physiological functions and pancreatic islets --- p.67 / Chapter 1.5.3 --- Vitamin D and diabetes mellitus --- p.68 / Chapter 1.5.4 --- Vitamin D and RAS --- p.70 / Chapter 1.6 --- Objectives --- p.71 / Chapter Chapter 2 --- Materials and Methods --- p.73 / Chapter 2.1 --- Experimental animal models --- p.74 / Chapter 2.1.1 --- Animal model ofT2DM --- p.74 / Chapter 2.1.2 --- Animal model for pancreatic islet isolation --- p.75 / Chapter 2.1.3 --- Vitamin D receptor knockout mice (VDRKO mice) --- p.75 / Chapter 2.1.4 --- Animal model for vitamin D deficiency --- p.76 / Chapter 2.2 --- Pancreatic islet isolation and culture --- p.76 / Chapter 2.2.1 --- Mice pancreatic islet and single B-cell isolation --- p.77 / Chapter 2.2.2 --- Primary culture of isolated pancreatic islets: --- p.78 / Chapter 2.3 --- Physiological assay for pancreatic islet function --- p.78 / Chapter 2.3.1 --- Measurement of blood glucose and glucose tolerance test --- p.78 / Chapter 2.3.2 --- Measurement of glucose-induced insulin secretion --- p.79 / Chapter 2.3.3 --- Measurement of (pro )insulin biosynthesis --- p.80 / Chapter 2.4 --- Detection ofmRNA expression --- p.80 / Chapter 2.4.1 --- Design of primers --- p.81 / Chapter 2.4.2 --- mRNA extraction and cDNA synthesis --- p.82 / Chapter 2.4.3 --- Detection of mRN A expression by conventional peR --- p.83 / Chapter 2.4.4 --- SYBR Green real-time peR --- p.83 / Chapter 2.4.5 --- Real-time peR analysis using the comparative eT method --- p.84 / Chapter 2.5 --- Detection of protein expression --- p.84 / Chapter 2.5.1 --- Western blot analysis --- p.84 / Chapter 2.5.2 --- Immunostaining assessment --- p.85 / Chapter 2.6 --- In situ detection of oxidative stress, proliferation and apoptosis --- p.88 / Chapter 2.6.1 --- Detection of islet reactive oxygen species --- p.88 / Chapter 2.6.2 --- Detection of cell proliferation --- p.89 / Chapter 2.6.3 --- Measurement of cell apoptosis --- p.90 / Chapter 2.7 --- Statistical data analysis --- p.90 / Chapter Chapter 3 --- Combination of DPP-IV Inhibitor LAF237 with ATl Receptor Antagonist Valsartan Enhances Pancreatic Islet Morphology and Function in a Mouse Model of Type 2 Diabetes (This work has been published in J Pharmacal Exp Ther, 327: PI-9) --- p.91 / Chapter 3.1 --- Abstract --- p.92 / Chapter 3.2 --- Introduction --- p.94 / Chapter 3.3 --- Materials and Methods --- p.96 / Chapter 3.4 --- Results --- p.103 / Chapter 3.4.1 --- Effects of acute treatment with GLP-I and valsartan on insulin secretion in isolated islets --- p.103 / Chapter 3.4.2 --- Effects of LAF237 and valsartan on pancreatic --- p.105 / Chapter 3.4.3 --- Effects of LAF237 and valsartan on --- p.107 / Chapter 3.4.4 --- Effects ofLAF237 and valsartan on islet apoptosis --- p.109 / Chapter 3.4.5 --- Effects of LAF237 and valsartan on islet fibrosis --- p.110 / Chapter 3.4.6 --- Effects of LAF237 and valsartan on pancreatic islet superoxide and nitrotyrosine expression --- p.113 / Chapter 3.4.7 --- Effects of LAF237 and valsartan on bood glucose concentration and glucose tolerance in db/db diabetic mice --- p.116 / Chapter 3.5 --- Discussion --- p.119 / Chapter Chapter 4 --- The Role of Calcitriol in Modulating the Expression and Function of Islet Renin-Angiotensin System in Isolated Mouse Pancreatic Islets --- p.124 / Chapter 4.1 --- Abstract --- p.125 / Chapter 4.2 --- Introduction --- p.127 / Chapter 4.3 --- Materials and Methods --- p.130 / Chapter 4.4 --- Results --- p.135 / Chapter 4.4.1 --- The expression of islet VDR under different glucose conditions and the effects of calcitriol --- p.135 / Chapter 4.4.2 --- The effect of calcitriol on high glucose-modulated islet RAS component expression --- p.140 / Chapter 4.4.3 --- The protective effect of calcitriol against high glucose on islet RAS component expression --- p.144 / Chapter 4.4.4 --- The effect of calcitriol on (pro )insulin biosynthesis and insulin release in isolated islets --- p.148 / Chapter 4.5 --- Discussion --- p.151 / Chapter Chapter 5 --- Altered Islet Local Renin-Angiotensin System and Islet Function in Mice with Hypovitaminosis D --- p.158 / Chapter 5.1 --- Abstract --- p.159 / Chapter 5.2 --- Introduction --- p.160 / Chapter 5.3 --- Materials and methods --- p.163 / Chapter 5.4 --- Results --- p.168 / Chapter 5.4.1 --- Glucose homeostasis and islet morphology in VDR KO mice --- p.168 / Chapter 5.4.2 --- Expression of vitamin D receptor and major RAS components in the pancreatic islets of WT and VDR KO mice --- p.170 / Chapter 5.4.3 --- Vitamin D deficiency in mice on a vitamin D deficient diet --- p.172 / Chapter 5.4.4 --- Altered glucose homeostasis in vitamin D deficient mice --- p.174 / Chapter 5.4.5 --- Islet histomorphology in vitamin D deficient mice --- p.176 / Chapter 5.4.6 --- Regulation of islet RAS components expression in vitamin D deficient mice --- p.179 / Chapter 5.4.7 --- Transcriptional regulation of islet insulin receptor and its substrates in vitamin D deficient mice --- p.181 / Chapter 5.4.8 --- Effect of calcitriol treatment on glucose tolerance in vitamin D deficient mice --- p.183 / Chapter 5.5 --- Discussion --- p.185 / Chapter Chapter 6 --- General Discussion --- p.191 / Chapter 6.1 --- Combination effects of blocking islet RAS components and enhancing incretin activity on improving islet function in type 2 diabetes --- p.193 / Chapter 6.2 --- Potential modulatory effect of vitamin D on islet RAS expression and action --- p.196 / Chapter 6.3 --- The role of vitamin D in modulating islet RAS in glucose homeostasis and islet function --- p.199 / Chapter 6.4 --- The significance ofRAS, GLP-l and vitamin D in the management of T2DM --- p.201 / Chapter 6.5 --- Conclusion --- p.202 / Chapter 6.6 --- Future studies --- p.202 / Chapter Chapter 7 --- Bibliography --- p.205
56

Transcription factors and downstream genes modulating TNF-gas + IFN-gcs induced beta cell apoptosis

Barthson, Jenny 08 April 2013 (has links)
In type 1 diabetes (T1D) a combination of genetic predisposition and environmental factors triggers islet inflammation (insulitis) leading to a selective and gradual destruction of the pancreatic beta cells. Beta cells mainly die through apoptosis, triggered at least in part by pro-inflammatory cytokines such as IL-1β, TNF-α and IFN-γ. Recent findings suggest that the mitochondrial pathway of cell death is involved in this death cascade. Array analysis indicated that TNF-α+IFN-γ induces transcription factors such as NF-ĸB, STAT1, and AP-1 in beta cells. We presently aimed to examine the pathway(s) of apoptosis triggered by TNF-α+IFN-γ in beta cells. <p>TNF-α+IFN-γ induces beta cell apoptosis through the intrinsic pathway of cell death. This involved activation of the BH3 only proteins DP5, PUMA and Bim. Knockdown (KD) of either DP5 or PUMA or both led to a partial protection of INS-1E cells (12-20%), while silencing Bim led to about 60% protection against cytokine-induced apoptosis. Bim is transcriptionally induced by activated STAT1. TNF-α+IFN-γ also induces downregulation of Bcl-XL, an anti-apoptotic Bcl-2 gene which inhibits Bim. Knocking down Bcl-XL alone led to increase in apoptosis, but this was prevented by the parallel KD of Bim.<p>The ultimate goal of our research is to protect beta cells from the autoimmune assault. Previous data revealed that JunB inhibits ER stress and apoptosis in beta cells treated with IL-β+IFN-γ. Here, TNF-α+IFN-γ up-regulated the expression of JunB which was downstream of activated NF-ĸB. JunB KD exacerbated TNF-α+IFN-γ induced beta cell death in primary rat beta cells and INS-1E cells. The gene networks affected by JunB were studied by microarray analysis. JunB regulates 20-25% of the cytokine-modified beta cell genes, including the transcription factor ATF3 and Bcl-XL. ATF3 expression was increased in cytokine-treated human islets and in vitro silencing of JunB led to >60% reduction in ATF3 overexpression. We confirmed direct JunB regulation of the ATF3 promoter by its binding to an ATF/CRE site. Silencing of ATF3 aggravated TNF-α+IFN-γ induced cell death in beta cells and led to the downregulation of Bcl-XL expression in INS-1E cells. Pharmacological upregulation of JunB using forskolin led to upregulation of ATF3 and consistent protection of these cells against cytokine-induced cell death, while genetic overexpression of JunB in mice increased ATF3 expression in the pancreatic islets and reversed the pro-apoptotic effects of cytokines on beta cells (±40 % protection). <p>As a whole, our findings indicate that TNF-α+IFN-γ triggers beta cell apoptosis by the upregulation of the pro-apoptotic protein Bim and downregulation of the Bcl-XL protein. These deleterious effects are at least in part antagonized by JunB via activation of ATF3. <p><p>Dans le diabète de type 1 (DT1), la combinaison de facteurs génétiques de prédisposition et de l'environnement déclenche l'inflammation des îlots de Langerhans (insulite) conduisant à une destruction sélective et progressive des cellules bêta du pancréas. Les cellules bêta meurent principalement d’apoptose, déclenchée au moins en partie par les cytokines pro-inflammatoires sécrétées par les cellules immunitaires comme l’IL-β, le TNF-α l’IFN-γ. De récentes découvertes suggèrent que la voie mitochondriale de la mort cellulaire jouerait un rôle dans la mort de ces cellules. L'analyse de réseaux de gène utilisant les biopuces d’ADN indique que l’association TNF-α+IFN-γ induit l’activation de facteurs de transcription tels que NF-ĸB, STAT1 et AP-1 dans la cellule bêta. Dans ce contexte, nous avons cherché à examiner les voies de l'apoptose déclenchées par le TNF-α+IFN-γ dans la cellule bêta. <p>En présence de TNF-α+IFN-γ les cellules bêta meurent par apoptose via la voie intrinsèque. L’activation des protéines pro-apoptotiques « BH3-seulement » dont DP5, PUMA et Bim étaient en cause de cette apoptose. Le « knockdown »1 (KD), de DP5 ou de PUMA, ou des deux en même temps conduit à une protection partielle des cellules INS-1E (12-20%), tandis que le KD de Bim conduit à environ 60% de protection contre l’apoptose induite par cette combinaison de cytokines. La transcription de Bim est induite par STAT1 activé. Parallèlement à la régulation positive de Bim, TNF-α+IFN-γ conduit à la régulation négative de la protéine Bcl-XL. Bcl-XL est une protèine anti-apoptotique de la famille de protèines Bcl-2 qui en general inhibe Bim. Réduire l’expression de Bcl-XL seul induit une augmention de l'apoptose, alors que le KD de Bim et Bcl-XL en parallèle empêche l'apoptose.<p>Le but ultime de notre recherche est de protéger les cellules bêta des agressions autoimmunitaires. Les données antérieures ont révélé que JunB inhibe le stress du réticulum endoplasmique et l'apoptose dans les cellules bêta traitées avec IL-β+IFN-γ. Nous avons observé que TNF-α+IFN-γ induit l'expression de JunB qui se produit en aval de NF-ĸB activé. Il est important de noter que l’inactivation de JunB par des agents interférants de l’ARN (siRNA) exacerbe la mort des cellules primaires bêta de rat et de cellules INS-1E induite par les cytokines. Les réseaux de gènes touchés par JunB ont été étudiés grâce a l'analyse en microréseaux. JunB règule 20-25% des gènes modifiés par des cytokines dans les cellules bêta, y compris le facteur de transcription ATF3 et Bcl-XL. L’expression d’ATF3 est augmenté dans les îlots humains traités avec les cytokines et la répression in vitro de JunB conduit à une réduction de >60% de l’expression d’ATF3. Nous avons confirmé la régulation d’ATF3 par JunB en montrant que JunB est directement lié au promoteur d’ATF3 via le site ATF/CRE. La diminution d’expression d’ATF3 en presence de TNF-α+IFN-γ a aggravé la mort cellulaire induite dans les cellules bêta et a conduit à la régulation négative de l'expression de Bcl-XL dans les cellules INS-1E. L’augmentation pharmacologique de JunB dans les cellules INS-1E par l’utilisation de forskolin a conduit à la régulation positive en aval d’ATF3 et par conséquente à la protection de cellules bêta vis-a-vis de effets indésirables des cytokines. Dans cette optique, la surexpression génétique de JunB dans le modèle Ubi-JunB de souris transgénique a conduit à une surexpression d’ATF3 dans les îlots pancréatiques et a permir d’inverser les effets pro-apoptotiques de cytokines sur la cellule bêta (protection ± 40%).<p>Globalement, ces résultats indiquent que TNF-α+IFN-γ déclenche l'apoptose des cellules bêta par la régulation positive du gène pro-apoptotique Bim et la régulation négative du gène anti-apoptotique Bcl-XL. Ces effets indésirables sont inhibé en partie par JunB via l’activation de ATF3.<p><p>1Pas d’équivalent en français. Signifie la réduction de l’expression d’un gène via utilisation d’un siRNA (agent interférant de l’ARN).<p> / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
57

Tunable hydrogels for pancreatic tissue engineering

Raza, Asad 03 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Type I diabetes is an autoimmune disorder characterized by the loss of insulin producing islet cell mass. While daily insulin injection provides an easy means of glycemic control, it does not prevent long-term complications associated with diabetes. Islet transplantation has been suggested as a permanent cure for type 1 diabetes. However, the recurrence of host immunity and shortage of donor islets hinder the prevalence of islet transplantation. Biomaterial strategies provide an alternative route to solving the problems associated with host immune response and shortage of donor islets. One highly recognized platform for achieving these goals are hydrogels, which are hydrophilic crosslinked polymers with tissue-like elasticity and high permeability. Hydrogels prepared from poly(ethylene glycol) (PEG) derivatives are increasingly used for a variety of tissue engineering applications, including encapsulation of pancreatic islets and serving as a material platform for pseudo-islet differentiation. PEG hydrogels formed by mild and rapid thiol-ene photo-click reactions are particularly useful for studying cell behaviors in three-dimension (3D). Thiol-ene PEG-based hydrogels can be rendered biodegradable if appropriate macromer and cross-linker chemistry is employed. However, the influence of hydrogel matrix properties on the survival, growth, and morphogenesis of cells in 3D has not been fully evaluated. This thesis aims at using norbornene-functionalized PEG macromers to prepare thiol-ene hydrogels with various stiffness and degradability, from which to study the influence of hydrogel properties on pancreatic cell fate processes in 3D. Toward establishing an adaptable hydrogel platform for pancreatic tissue engineering, this thesis systematically studies the influence of hydrogel properties on encapsulated endocrine cells (e.g., MIN6 beta-cells) and exocrine cells (PANC-1 cells), as well as human mesenchymal stem cells (hMSC). It was found that thiol-ene photo-click hydrogels provide a cytocompatible environment for 3D culture of these cells. However, cell viability was negatively affected in hydrogels with higher cross-linking density. In contrast to a monolayer when cultured on a 2D surface, cells with epithelial characteristic formed clusters and cells with mesenchymal features retained single cell morphology in 3D. Although cells survived in all hydrogel formulations studied, the degree of proliferation, and the size and morphology of cell clusters formed in 3D were significantly influenced by hydrogel matrix compositions. For example: encapsulating cells in hydrogels formed by hydrolytically degradable macromer positively influenced cell survival indicated by increased proliferation. In addition, when cells were encapsulated in thiol-ene gels lacking cell-adhesive motifs, hydrolytic gel degradation promoted their survival and proliferation. Further, adjusting peptide crosslinker type and immobilized ECM-mimetic bioactive cues provide control over cell fate by determining whether observed cellular morphogenesis is cell-mediated or matrix-controlled. These fundamental studies have established PEG-peptide hydrogels formed by thiol-ene photo-click reaction as a suitable platform for pancreatic tissue engineering
58

Mechanisms of translational regulation in the pancreatic β cell stress response

Templin, Andrew Thomas January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The islet beta cell is unique in its ability to synthesize and secrete insulin for use in the body. A number of factors including proinflammatory cytokines, free fatty acids, and islet amyloid are known to cause beta cell stress. These factors lead to lipotoxic, inflammatory, and ER stress in the beta cell, contributing to beta cell dysfunction and death, and diabetes. While transcriptional responses to beta cell stress are well appreciated, relatively little is known regarding translational responses in the stressed beta cell. To study translation, I established conditions in vitro with MIN6 cells and mouse islets that mimicked UPR conditions seen in diabetes. Cell extracts were then subjected to polyribosome profiling to monitor changes to mRNA occupancy by ribosomes. Chronic exposure of beta cells to proinflammatory cytokines (IL-1 beta, TNF-alpha, IFN-gamma), or to the saturated free fatty acid palmitate, led to changes in global beta cell translation consistent with attenuation of translation initiation, which is a hallmark of ER stress. In addition to changes in global translation, I observed transcript specific regulation of ribosomal occupancy in beta cells. Similar to other privileged mRNAs (Atf4, Chop), Pdx1 mRNA remained partitioned in actively translating polyribosomes during the UPR, whereas the mRNA encoding a proinsulin processing enzyme (Cpe) partitioned into inactively translating monoribosomes. Bicistronic luciferase reporter analyses revealed that the distal portion of the 5’ untranslated region of mouse Pdx1 (between bp –105 to –280) contained elements that promoted translation under both normal and UPR conditions. In contrast to regulation of translation initiation, deoxyhypusine synthase (DHS) and eukaryotic translation initiation factor 5A (eIF5A) are required for efficient translation elongation of specific stress relevant messages in the beta cell including Nos2. Further, p38 signaling appears to promote translational elongation via DHS in the islet beta cell. Together, these data represent new insights into stress induced translational regulation in the beta cell. Mechanisms of differential mRNA translation in response to beta cell stress may play a key role in maintenance of islet beta cell function in the setting of diabetes.
59

Novel Roles of p21 in Apoptosis During Beta-Cell Stress in Diabetes

Hernández-Carretero, Angelina M. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Type 2 diabetes manifests from peripheral insulin resistance and a loss of functional beta cell mass due to decreased beta cell function, survival, and/or proliferation. Beta cell stressors impair each of these factors by activating stress response mechanisms, including endoplasmic reticulum (ER) stress. The glucolipotoxic environment of the diabetic milieu also activates a stress response in beta cells, resulting in death and decreased survival. Whereas the cell cycle machinery (comprised of cyclins, kinases, and inhibitors) regulates proliferation, its involvement during beta cell stress in the development of diabetes is not well understood. Interestingly, in a screen of multiple cell cycle inhibitors, p21 was dramatically upregulated in INS-1-derived 832/13 cells and rodent islets by two independent pharmacologic inducers of beta cell stress - dexamethasone and thapsigargin. In addition, glucolipotoxic stress mimicking the diabetic milieu also induced p21. To further investigate p21’s role in the beta cell, p21 was adenovirally overexpressed in 832/13 cells and rat islets. As expected given p21’s role as a cell cycle inhibitor, p21 overexpression decreased [3H]-thymidine incorporation and blocked the G1/S and G2/M transitions as quantified by flow cytometry. Interestingly, p21 overexpression activated apoptosis, demonstrated by increased annexin- and propidium iodide-double-positive cells and cleaved caspase-3 protein. p21-mediated caspase-3 cleavage was inhibited by either overexpression of the anti-apoptotic mitochondrial protein Bcl-2 or siRNA-mediated suppression of the pro-apoptotic proteins Bax and Bak. Therefore, the intrinsic apoptotic pathway is central for p21-mediated cell death. Like glucolipotoxicity, p21 overexpression inhibited the insulin cell survival signaling pathway while also impairing glucose-stimulated insulin secretion, an index of beta cell function. Under both conditions, phosphorylation of insulin receptor substrate-1, Akt, and Forkhead box protein-O1 was reduced. p21 overexpression increased Bim and c-Jun N-terminal Kinase, however, siRNA-mediated reduction or inhibition of either protein, respectively, did not alter p21-mediated cell death. Importantly, islets of p21-knockout mice treated with the ER stress inducer thapsigargin displayed a blunted apoptotic response. In summary, our findings indicate that p21 decreases proliferation, activates apoptosis, and impairs beta cell function, thus being a potential target to inhibit for the protection of functional beta cell mass.
60

Pdx-1 modulates endoplasmic reticulum calcium homeostasis in the islet β cell via transcriptional enhancement of SERCA2b

Johnson, Justin Sean January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Diabetes mellitus affects an estimated 285 million people worldwide, and a central component of diabetes pathophysiology is diminished pancreatic islet beta cell function resulting in the inability to manage blood glucose effectively. The beta cell is a highly specialized metabolic factory that possesses a number of specialized characteristics, chief among these a highly developed endoplasmic reticulum (ER). The sarco endoplasmic reticulum Ca2+ ATPase 2b (SERCA2b) pump maintains a steep Ca2+ gradient between the cytosol and ER lumen, and while the Pancreatic and duodenal homeobox 1 (Pdx-1) transcription factor is known to play an indispensable role in beta cell development and function, recent data also implicate Pdx-1 in the maintenance of ER health. Our data demonstrates that a decrease of beta cell Pdx-1 occurs in parallel with decreased SERCA2b expression in models of diabetes, while in silico analysis of the SERCA2b promoter reveals multiple putative Pdx-1 binding sites. We hypothesized that Pdx-1 loss under inflammatory and diabetic conditions leads to decreased SERCA2b with concomitant alterations in ER health. To test this, siRNA-mediated knockdown of Pdx-1 was performed in INS-1 cells. Results revealed reduced SERCA2b expression and decreased ER Ca2+, which was measured using an ER-targeted D4ER adenovirus and fluorescence lifetime imaging microscopy. Co-transfection of human Pdx-1 with a reporter fused to the human SERCA2 promoter increased luciferase activity three-fold relative to the empty vector control, and direct binding of Pdx-1 to the proximal SERCA2 promoter was confirmed by chromatin immunoprecipitation. To determine whether restoration of SERCA2b could rescue ER stress induced by Pdx-1 loss, Pdx1+/- mice were fed high fat diet for 8 weeks. Isolated islets from these mice demonstrated increased expression of spliced Xbp1, signifying ER stress, while subsequent SERCA2b overexpression in isolated islets reduced spliced Xbp1 levels to that of wild-type controls. These results identify SERCA2b as a direct transcriptional target of Pdx-1 and define a novel role for altered ER Ca2+ regulation in Pdx-1 deficient states.

Page generated in 0.1241 seconds