Spelling suggestions: "subject:"islet"" "subject:"dslet""
41 |
The MEK Inhibitor Trametinib Suppresses Major Histocompatibility Antigen-mismatched Rejection Following Pancreatic Islet Transplantation / MEK阻害剤トラメチニブは膵島移植後の拒絶反応を抑制するTada, Seiichiro 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23079号 / 医博第4706号 / 新制||医||1049(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 松田 道行, 教授 稲垣 暢也, 教授 妹尾 浩 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
42 |
Role of mitochondrial dysfunction in the development of nutrient-induced hyperinsulinemiaAlsabeeh, Nour 12 June 2018 (has links)
Pancreatic beta cells sense fluctuations in circulating nutrients and adjust the rate of insulin secretion to maintain glucose homeostasis. Mitochondria integrate changes in nutrient flux to the generation of signals that modulate insulin secretion via oxidative phosphorylation. Type 2 Diabetes (T2D) is characterized by beta cell mitochondrial dysfunction and impairment of insulin secretion. Early stage progression of this disease in obese and pre-diabetic subjects is characterized by basal hypersecretion of insulin and increased insulin resistance in peripheral tissues including muscle, liver and adipose tissue. Whether basal hypersecretion of insulin or insulin resistance is the primary defect in T2D progression is still debated. The molecular mechanism underlying basal insulin hypersecretion and how it may lead to beta cell failure are not understood. Herein, we optimize a model of glucolipotoxicity that results in increased basal and reduced stimulated insulin secretion response. Furthermore, we show that pancreatic islets exposed to excess nutrients in vitro or isolated from high fat diet fed animals, have a decreased bioenergetic efficiency, which is characterized by increased mitochondrial proton leak. Leak represents the fraction of oxygen consumed that is not coupled to ATP production. We show that leak is sufficient to induce insulin secretion at basal glucose levels and that nutrient-induced insulin secretion at basal glucose is leak-dependent. Finally, we identify the mitochondrial permeability transition pore (PTP) as the source of the leak. Our findings suggest the PTP may be a potential therapeutic target to prevent/delay the onset of hyperinsulinemia in pre-diabetic subjects.
|
43 |
The Role of Sox17 in Normal and Pathological Beta CellJonatan, Diva January 2012 (has links)
No description available.
|
44 |
Thrombocytosis Following Pancreatectomy with Islet Autotransplantation in Children: Cincinnati Children's Hospital ExperienceGurria, Juan P. 21 September 2018 (has links)
No description available.
|
45 |
Small Molecules as Amyloid Inhibitors: Molecular Dynamic Simulations with Human Islet Amyloid Polypeptide (IAPP)King, Kelsie Marie 09 June 2021 (has links)
Islet amyloid polypeptide (IAPP) is a 37-residue amyloidogenic hormone implicated in the progression of Type II Diabetes (T2D). T2D affects an estimated 422 million people yearly and is a co-morbidity with numerous diseases. IAPP forms toxic oligomers and amyloid fibrils that reduce pancreatic β-cell mass and exacerbate the T2D disease state. Toxic oligomer formation is attributed, in part, to the formation of inter-peptide β-strands comprised of residues 23-27 (FGAIL). Flavonoids, a class of polyphenolic natural products, have been found experimentally to inhibit IAPP aggregate formation. Many of these known IAPP aggregation attenuating small flavonoids differ structurally only slightly; the influence of functional group placement on inhibiting the aggregation of the IAPP(20-29) has yet to be explored. To probe the role of small-molecule structural features that impede IAPP aggregation, molecular dynamics (MD) simulations were performed on a model fragment of IAPP(20-29) in the presence of morin, quercetin, dihydroquercetin, epicatechin, and myricetin. Contacts between Phe23 residues are critical to oligomer formation, and small-molecule contacts with Phe23 are a key predictor of β-strand reduction. Structural properties influencing the ability of compounds to disrupt Phe23-Phe23 contacts include carbonyl and hydroxyl group placement. These structural features influence aromaticity and hydrophobicity, principally affecting ability to disrupt IAPP(20-29) oligomer formation. This work provides key information on design considerations for T2D therapeutics. / Master of Science in Life Sciences / Type II Diabetes (T2D) affects an estimated 422 million people worldwide, with the World Health Organization (WHO) reporting that approximately 1.5 million deaths were directly caused by T2D in 2019. The progression of T2D has been attributed to a protein, called islet amyloid polypeptide (IAPP, or amylin) that is co-secreted with insulin after individuals eat or consumes calories. IAPP has been discovered to form toxic aggregates or clumps of protein material that worsen the disease state and cause a loss of mass of pancreatic cells. There is a large market for therapeutics of T2D and more small molecule drugs are needed to slow progression and severity of T2D. Flavonoids, a class of natural molecules, have been found to inhibit the processes by which IAPP promotes T2D disease progression by stopping the aggregation of IAPP. The structures of these flavonoid compounds differ slightly but show difference in ability to slow IAPP aggregation. By understanding how those differences confer more or less protection against T2D and inhibit IAPP aggregation, we can design more potent and specific drugs to target IAPP. To probe the role of molecular structure in preventing IAPP aggregation, molecular dynamics (MD) simulations — a powerful computational technique — were performed on a model fragment of IAPP in the presence of molecules morin, quercetin, dihydroquercetin, epicatechin, and myricetin. MD simulations provide extremely detailed information about potential drug interactions with a given target, serving as an important tool in the development of new drugs. This work has identified key features and predictors of effective IAPP drugs, providing a framework for the further development of therapeutics against T2D and similar diseases.
|
46 |
The Role of Innate Immunity in Islet Transplantation : Clinical and Experimental StudiesMoberg, Lisa January 2004 (has links)
<p>Clinical islet transplantation is an emerging procedure to cure type 1 diabetes. The graft is implanted by infusion into the liver through the portal vein. A major obstacle that still needs to be overcome is the requirement for islets from multiple donors to achieve insulin independence. </p><p>An innate inflammatory reaction, the IBMIR, is elicited when islets are exposed to blood. The IBMIR has been described as a clotting reaction culminating in disruption of islet morphology and is a plausible cause for loss of tissue during the early post-transplant period. </p><p>In this thesis, the underlying mechanisms of the IBMIR were characterized. The IBMIR was for the first time demonstrated in patients undergoing an islet transplant, and a number of clinically applicable strategies to limit this reaction were identified.</p><p>The thrombin inhibitor melagatran completely blocked the IBMIR in an <i>in vitro</i> tubing blood loop system, indicating that thrombin is the driving force in the reaction. Interestingly, islets were shown to produce and secrete tissue factor (TF), the physiological trigger of coagulation. Inactivated FVIIa, a specific inhibitor of TF, successfully blocked initiation of the IBMIR. An alternative approach to limit the IBMIR was to pre-treat islets in culture prior to transplantation. Nicotinamide added to the culture medium effectively decreased the level of TF in human islets. Infiltration of immune cells, also a part of the IBMIR, was characterized in detail. The predominant cell types infiltrating the islets were neutrophilic granulocytes and, to a lesser degree, monocytes. Both cell types may exert direct cytotoxic effects, and the antigen-presenting monocytes may also be important for directing the specific immune system to the site of inflammation. </p><p>These findings have provided new insight into the nature of the IBMIR and offer several new strategies to improve the outcome of clinical islet transplantation.</p>
|
47 |
The Microvasculature of Endogenous and Transplanted Pancreatic Islets : Blood Perfusion, Oxygenation and Islet Endocrine FunctionOlsson, Richard January 2006 (has links)
<p>Type 1 diabetes mellitus affects millions of people worldwide. Islet transplantation is a minimal invasive surgical procedure that restores euglycemia and halts the progression of diabetic complications. However, despite transplantation of islets from multiple donors most patients reverse to hyperglycemia within five years. New strategies to improve long-term outcome of islet transplantation are indispensable. This thesis studied differences in the microvasculature between endogenous and transplanted pancreatic islets, and investigated means to improve islet graft revascularization and function. Islet graft microvessels were similar to endogenous islets responsive to adenosine, angiotensin II and nitric oxide (NO). Recipient hyperglycemia induced a higher basal islet graft blood flow, which also was less dependent on NO than in normoglycemic recipients. Transplantation of freshly isolated instead of cultured islets improved graft revascularization, oxygenation and function. Pretreatment of islets with vascular endothelial growth factor decreased their expression of matrix metalloproteinase-9 (MMP-9) and impaired graft revascularization. Moreover, MMP-9 pretreatment <i>per se</i> improved graft revascularization. <i>In vivo</i>, 20-25% of all endogenous rat islets was low oxygenated (pO<sub>2</sub> <10 mmHg). Changes in the islet mass, by means of whole-pancreas transplantation, doubled the fraction of low oxygenated islets in the endogenous pancreas of transplanted animals, whereas this fraction almost completely disappeared after a 60% partial pancreatectomy. Interestingly, oxygenation was related to metabolism, since well oxygenated islets <i>in vivo</i> had 50% higher leucine-dependent protein biosynthesis, which includes (pro)insulin biosynthesis. In intraportally transplanted islets, the low oxygenated fraction of islets was markedly increased one day post-transplantation, and the oxygenation remained low following revascularization. In summary, these data suggest that a better revascularization of transplanted islets can improve graft function. Furthermore, the oxygenation and metabolism of endogenous islets is tightly regulated. This regulation seems to be disturbed following transplantation, which may contribute to long-term islet graft failure. </p>
|
48 |
The Role of Innate Immunity in Islet Transplantation : Clinical and Experimental StudiesMoberg, Lisa January 2004 (has links)
Clinical islet transplantation is an emerging procedure to cure type 1 diabetes. The graft is implanted by infusion into the liver through the portal vein. A major obstacle that still needs to be overcome is the requirement for islets from multiple donors to achieve insulin independence. An innate inflammatory reaction, the IBMIR, is elicited when islets are exposed to blood. The IBMIR has been described as a clotting reaction culminating in disruption of islet morphology and is a plausible cause for loss of tissue during the early post-transplant period. In this thesis, the underlying mechanisms of the IBMIR were characterized. The IBMIR was for the first time demonstrated in patients undergoing an islet transplant, and a number of clinically applicable strategies to limit this reaction were identified. The thrombin inhibitor melagatran completely blocked the IBMIR in an in vitro tubing blood loop system, indicating that thrombin is the driving force in the reaction. Interestingly, islets were shown to produce and secrete tissue factor (TF), the physiological trigger of coagulation. Inactivated FVIIa, a specific inhibitor of TF, successfully blocked initiation of the IBMIR. An alternative approach to limit the IBMIR was to pre-treat islets in culture prior to transplantation. Nicotinamide added to the culture medium effectively decreased the level of TF in human islets. Infiltration of immune cells, also a part of the IBMIR, was characterized in detail. The predominant cell types infiltrating the islets were neutrophilic granulocytes and, to a lesser degree, monocytes. Both cell types may exert direct cytotoxic effects, and the antigen-presenting monocytes may also be important for directing the specific immune system to the site of inflammation. These findings have provided new insight into the nature of the IBMIR and offer several new strategies to improve the outcome of clinical islet transplantation.
|
49 |
The Microvasculature of Endogenous and Transplanted Pancreatic Islets : Blood Perfusion, Oxygenation and Islet Endocrine FunctionOlsson, Richard January 2006 (has links)
Type 1 diabetes mellitus affects millions of people worldwide. Islet transplantation is a minimal invasive surgical procedure that restores euglycemia and halts the progression of diabetic complications. However, despite transplantation of islets from multiple donors most patients reverse to hyperglycemia within five years. New strategies to improve long-term outcome of islet transplantation are indispensable. This thesis studied differences in the microvasculature between endogenous and transplanted pancreatic islets, and investigated means to improve islet graft revascularization and function. Islet graft microvessels were similar to endogenous islets responsive to adenosine, angiotensin II and nitric oxide (NO). Recipient hyperglycemia induced a higher basal islet graft blood flow, which also was less dependent on NO than in normoglycemic recipients. Transplantation of freshly isolated instead of cultured islets improved graft revascularization, oxygenation and function. Pretreatment of islets with vascular endothelial growth factor decreased their expression of matrix metalloproteinase-9 (MMP-9) and impaired graft revascularization. Moreover, MMP-9 pretreatment per se improved graft revascularization. In vivo, 20-25% of all endogenous rat islets was low oxygenated (pO2 <10 mmHg). Changes in the islet mass, by means of whole-pancreas transplantation, doubled the fraction of low oxygenated islets in the endogenous pancreas of transplanted animals, whereas this fraction almost completely disappeared after a 60% partial pancreatectomy. Interestingly, oxygenation was related to metabolism, since well oxygenated islets in vivo had 50% higher leucine-dependent protein biosynthesis, which includes (pro)insulin biosynthesis. In intraportally transplanted islets, the low oxygenated fraction of islets was markedly increased one day post-transplantation, and the oxygenation remained low following revascularization. In summary, these data suggest that a better revascularization of transplanted islets can improve graft function. Furthermore, the oxygenation and metabolism of endogenous islets is tightly regulated. This regulation seems to be disturbed following transplantation, which may contribute to long-term islet graft failure.
|
50 |
Islet Neogenesis Associated Protein-Related Protein: From Gene to Folded ProteinKulis, Michael D., Jr. 12 January 2006 (has links)
Type 1 diabetes is the direct result of an autoimmune attack on the pancreatic islet cells. The islets contain b cells, which are the only type of cell capable of supplying insulin in the human body. The destruction of these cells leaves the diabetic to rely on exogenous insulin to maintain a normal blood sugar level. Insulin therapy allows the diabetic to deal with the symptoms of the disease, but does nothing for the underlying condition. In order to truly cure the disease, the strategy is to replenish the b cells in the diabetic. Islet neogenesis associated protein (INGAP) has been shown to regenerate islet cells and reverse experimentally-induced diabetes in animal models. The INGAP pentadecapeptide is a 15 amino acid peptide from INGAP with comparable activity to the full-length protein. This 15-mer is undergoing clinical trials for treating diabetes.
The overall goal of the project described in this work is to determine the structure of the INGAP pentadecapeptide for use in structure-based drug design of non-peptide mimics of the 15-mer. The first set of experiments in the present work directly examined the 15-mer in solution using NMR. No stable structure of the small peptide was found. The second set of experiments involved a homolog of INGAP, called INGAP-related protein, or INGAPrP. INGAPrP was recombinantly produced in E. coli and subsequently purified and refolded. Refolding of INGAPrP was verified by a 1H-15N HSQC experiment. CD experiments supported the NMR study, indicating helical content in INGAPrP. The folded nature of the protein will allow for the three-dimensional structure of INGAPrP to be determined. The protein structure will show the fold of the 15-mer within the full-length protein. This information will be valuable for the ultimate goal of producing structural mimics of the INGAP pentadecapeptide. Non-peptide mimics should have better oral bioavailability and longer half-lives in vivo.
|
Page generated in 0.0281 seconds