Spelling suggestions: "subject:"isolator"" "subject:"insolator""
41 |
Strukturelle Relaxation von epitaktischen, dünnen La/Sr-Manganitfilmen in Abhängigkeit von der SchichtdickeGebhardt, Ulrich Manfred, January 2007 (has links)
Stuttgart, Univ., Diss., 2006.
|
42 |
From cuprates to manganites spin and orbital liquids /Kilian, Rolf. Unknown Date (has links) (PDF)
Techn. University, Diss., 1999--Dresden.
|
43 |
Evolution der strukturellen, elektronischen und magnetischen Eigenschaften von NaxV2O5 als Funktion der NatriumkonzentrationObermeier, Günter. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Augsburg.
|
44 |
An investigation into ways of substructuring for a vibratory system with rubber isolators / Uma investigação sobre formas de subestruturação para um sistema vibratório com isoladores de borrachaMarques, Viviane Cassol 12 December 2017 (has links)
Submitted by VIVIANE CASSOL MARQUES null (vivicm@gmail.com) on 2018-01-19T17:29:04Z
No. of bitstreams: 1
DefesaTese_Viviane_Cassol_Marques_LibraryVersion.pdf: 2942887 bytes, checksum: f212fcfebf6c7edc3efed2df80579420 (MD5) / Approved for entry into archive by Cristina Alexandra de Godoy null (cristina@adm.feis.unesp.br) on 2018-01-19T18:31:18Z (GMT) No. of bitstreams: 1
marques_vc_dr_ilha.pdf: 2942887 bytes, checksum: f212fcfebf6c7edc3efed2df80579420 (MD5) / Made available in DSpace on 2018-01-19T18:31:18Z (GMT). No. of bitstreams: 1
marques_vc_dr_ilha.pdf: 2942887 bytes, checksum: f212fcfebf6c7edc3efed2df80579420 (MD5)
Previous issue date: 2017-12-12 / Grandes estruturas, como aviões, navios e até mesmo sistemas de refrigeração, que possuem muitos componentes podem ser substruturados, com o intuito de agilizar e facilitar o cálculo da transmissão vibratória entre seus componentes. Existem diversas formas e domínios em que esta substruração pode ser realizada, sendo a utilizada nesta tese a substruturação no domínio da frequência utilizando para o cálculo as mobilidades medidas nos pontos de acoplamento dos componentes. Esta tese se concentra na substruturação de sistemas dinâmicos que possuem áreas flexíveis de contato como o que ocorre no acoplamento de amortecedores de borracha em sistemas vibratórios, sendo que para estes casos foi verificado que os métodos de substruturação mais usuais não apresentaram bons resultados para frequências superiores a primeira frequência natural do sistema completo, mesmo quando utilizados vários pontos de acoplamento no amortecedor de borracha. Utilizando o cálculo do comprimento de onda em diferentes materiais, neste caso o aço e a borracha, foi possível determinar uma relação entre a distância dos pontos de acoplamento e o comprimento de onda em que a metodologia de substruturação apresenta resultados acurados. Devido a estas limitações dos métodos de substruração, quando acoplamentos flexíveis existem nos subsistemas considerados, uma nova forma de substruração foi apresentada a qual mostrou resultados muito melhores, especialmente quando comparados com os resultados do sistema completo quando substruturado no acoplamento flexível. / Large structures, such as airplanes, ships and even refrigeration systems, which have many components, can be substructured in order to speed up and facilitate the process of calculating the vibratory transmission between the system components. There are several methods and domains in which the substructuring can be done. In this thesis the substructuring method in the frequency domain is chosen to do the calculations, with the mobilities measured at the coupling points of the components. This thesis focuses on the substructuring of dynamic systems that have flexible distributed connections, such as those which occur in the coupling with rubber isolators in vibratory systems. For these cases, the most usual substructuring methods are shown not to give good results for frequencies higher than the first natural frequency of the complete system, even when several coupling points are used for the rubber isolator. Using the calculation of the flexural wavelength in different materials, in this case steel and rubber, it is possible to determine a relationship between the distance of the coupling points within the isolator and the wavelengths of the component materials, at which the substructuring methodology gives accurate results. Due to these limitations of current substructuring methods, when soft flexible couplings exist in the subsystems, a new substructuring approach is presented, and is shown to really improve the results, especially when compared to the when the complete system is substructured at the flexible coupling.
|
45 |
An investigation into ways of substructuring for a vibratory system with rubber isolators /Marques, Viviane Cassol January 2017 (has links)
Orientador: Michael John Brennan / Resumo: Grandes estruturas, como aviões, navios e até mesmo sistemas de refrigeração, que possuem muitos componentes podem ser substruturados, com o intuito de agilizar e facilitar o cálculo da transmissão vibratória entre seus componentes. Existem diversas formas e domínios em que esta substruração pode ser realizada, sendo a utilizada nesta tese a substruturação no domínio da frequência utilizando para o cálculo as mobilidades medidas nos pontos de acoplamento dos componentes. Esta tese se concentra na substruturação de sistemas dinâmicos que possuem áreas flexíveis de contato como o que ocorre no acoplamento de amortecedores de borracha em sistemas vibratórios, sendo que para estes casos foi verificado que os métodos de substruturação mais usuais não apresentaram bons resultados para frequências superiores a primeira frequência natural do sistema completo, mesmo quando utilizados vários pontos de acoplamento no amortecedor de borracha. Utilizando o cálculo do comprimento de onda em diferentes materiais, neste caso o aço e a borracha, foi possível determinar uma relação entre a distância dos pontos de acoplamento e o comprimento de onda em que a metodologia de substruturação apresenta resultados acurados. Devido a estas limitações dos métodos de substruração, quando acoplamentos flexíveis existem nos subsistemas considerados, uma nova forma de substruração foi apresentada a qual mostrou resultados muito melhores, especialmente quando comparados com os resultados do sistema completo... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Large structures, such as airplanes, ships and even refrigeration systems, which have many components, can be substructured in order to speed up and facilitate the process of calculating the vibratory transmission between the system components. There are several methods and domains in which the substructuring can be done. In this thesis the substructuring method in the frequency domain is chosen to do the calculations, with the mobilities measured at the coupling points of the components. This thesis focuses on the substructuring of dynamic systems that have flexible distributed connections, such as those which occur in the coupling with rubber isolators in vibratory systems. For these cases, the most usual substructuring methods are shown not to give good results for frequencies higher than the first natural frequency of the complete system, even when several coupling points are used for the rubber isolator. Using the calculation of the flexural wavelength in different materials, in this case steel and rubber, it is possible to determine a relationship between the distance of the coupling points within the isolator and the wavelengths of the component materials, at which the substructuring methodology gives accurate results. Due to these limitations of current substructuring methods, when soft flexible couplings exist in the subsystems, a new substructuring approach is presented, and is shown to really improve the results, especially when compared to the when the complete sy... (Complete abstract click electronic access below) / Doutor
|
46 |
Inerter-added transmissibility to control base displacement in isolated structuresMorales, Cesar A. 15 January 2022 (has links)
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / his paper proposes a Lean Green model for increasing profitability in small and medium-sized businesses operating within the plastics sector. This model will use the 5S methodology, KanBan for inventory control and TPM to standardize new corrective and preventive maintenance processes. As an added contribution, a Circular Economy process will be included to reuse products, thus reducing consumption and generating less solid waste. In this way, companies will not only prevent damaging the environment but will also guarantee their compliance with regulatory standards. As a result, an 11% reduction was observed in the acquisition of supplies and spare parts for machine maintenance along with a 4% reduction in the number of machine breakdowns.
|
47 |
Měření parametrů optických a opto-elektrických komponent / Measurement of optical and opto-electrical components parametersHorňáková, Veronika January 2020 (has links)
This diploma thesis deals with optical and optoelectronic components. The first part describes three selected optical and three optoelectronic components. Optical components include power divider, isolator and circulator. The optoelectronic ones are laser diode, photodetector and modulator. Basic measurement parameters were defined for each component. In the experimental part, four components from different manufacturers were measured. Selected components are power dividers, isolators, circulators and a laser diode. Subsequently, the measured parameters were compared with the catalog values.
|
48 |
Surface states in the topological material HgTe / Oberflächenzustände im topologischen Material HgTeMahler, David January 2022 (has links) (PDF)
The motivation for this work has been contributing a step to the advancement of technology. A next leap in technology would be the realization of a scalable quantum computer. One potential route is via topological quantum computing. A profound understanding of topological materials is thus essential. My work contributes by the investigation of the exemplary topological material HgTe. The focus lies on the understanding of the topological surface states (TSS) and new possibilities to manipulate them appropriately. Traditionally top gate electrodes are used to adjust the carrier density in such semi-conductor materials. We found that the electric field of the top gate can further alter the properties of the HgTe layer. The formation of additional massive Volkov-Pankratov states limits the accessibility of the TSS. The understanding of these states and their interplay with the TSS is necessary to appropriately design devices and to ensure their desired properties. Similarly, I observed the existence and stability of TSSs even without a bandgap in the bulk band structure in the inversion induced Dirac semi-metal phase of compressively strained HgTe. The finding of topological surface states in inversion-induced Dirac semi-metals provides a consistent and simple explanation for the observation reported for \(\text{Cd}_3\text{As}_2\).
These observations have only been possible due to the high quality of the MBE grown HgTe layers and the access of different phases of HgTe via strain engineering. As a starting point I performed Magneto-transport measurements on 67 nm thick tensilely strained HgTe layers grown on a CdTe substrate. We observed multiple transport channels in this three-dimensional topological insulator and successfully identified them. Not only do the expected topological surface states exist, but also additional massive surface states have been observed. These additional massive surface states are formed due to the electrical field applied at the top gate, which is routinely used to vary the carrier density in the HgTe layer. The additional massive surface states are called Volkov-Pankratov states after B. A. Volkov and O. A. Pankratov. They predicted the existence of similar massive surface states at the interface of materials with mutually inverted bands. We first found indications for such massive Volkov-Pankratov states in high-frequency compressibility measurements for very high electron densities in a fruitful collaboration with LPA in Paris. Magneto-transport measurements and \(k \cdot p\) calculations revealed that such Volkov-Pankratov states are also responsible for the observed whole transport. We also found indications for similar massive VPS in the electron regime, which coexist with the topological surface states. The topological surface states exist over the full investigated gate range including a regime of pure topological insulator transport. To increase the variability of the topological surface states we introduced a modulation doping layer in the buffer layer. This modulation doping layer also enabled us to separate and identify the top and bottom topological surface states.
We used the variability of the bulk band structure of HgTe with strain to engineer the band structure of choice using virtual substrates. The virtual substrates enable us to grow compressively strained HgTe layers that do not possess a bandgap, but instead linear crossing points. These layers are predicted to beDirac semi-metals. Indeed I observed also topological surface states and massive Volkov-Pankratov states in the compressively strained Dirac semi-metal phase. The observation of topological surfaces states also in the Dirac semi-metal phase has two consequences: First, it highlights that no bulk bandgap is necessary to observe topological surface states. Second, the observation of TSS also in the Dirac semi-metal phase emphasizes the importance of the underlying band inversion in this phase. I could not find any clear signatures of the predicted disjoint topological surface states, which are typically called Fermi-arcs. The presence of topological surface states and massive Volkov-Pankratov states offer a simple explanation for the observed quantum Hall effect and other two-dimensional transport phenomena in the class of inversion induced Dirac semi-metals, as \(\text{Cd}_3\text{As}_2\). This emphasizes the importance of the inherent bulk band inversion of different topological materials and provides a consistent and elegant explanation for the observed phenomena in these materials. Additionally, it offers a route to design further experiments, devices, and thus the foundation for the induction of superconductivity and thus topological quantum computing.
Another possible path towards quantum computing has been proposed based on the chiral anomaly. The chiral anomaly is an apparent transport anomaly that manifests itself as an additional magnetic field-driven current in three-dimensional topological semimetals with a linear crossing point in their bulk band structure. I observed the chiral anomaly in compressively strained HgTe samples and performed multiple control experiments to identify the observed reduction of the magnetoresistance with the chiral anomaly. First, the dependence of the so-called negative magnetoresistance on the angle and strength of the magnetic field has been shown to fit the expectation for the chiral anomaly. Second, extrinsic effects as scattering could be excluded as a source for the observed negative MR using samples with different mobilities and thus impurity concentrations. Third, the necessity of the linear crossing point has been shown by shifting the electrochemical potential away from the linear crossing points, which diminished the negative magnetoresistance. Fourth, I could not observe a negative magnetoresistance in the three-dimensional topological insulator phase of HgTe. These observations together prove the existence of the chiral anomaly and verify compressively strained HgTe as Dirac semi-metal. Surprisingly, the chiral anomaly is also present in unstrained HgTe samples, which constitute a semi-metal with a quadratic band touching point. This observation reveals the relevance of the Zeeman effect for the chiral anomaly due to the lifting of the spin-degeneracy in these samples. Additionally to the chiral anomaly, the Dirac semi-metal phase of compressively strained HgTe showed other interesting effects. For low magnetic fields, a strong weak-antilocalization has been observed. Such a strong weak-anti-localization correction in a three-dimensional layer is surprising and interesting. Additionally, non-trivial magnetic field strength and direction dependencies have been observed. These include a strong positive magnetoresistance for high magnetic fields, which could indicate a metal-insulator transition. On a more device-oriented note, the semi-metal phase of unstrained HgTe constitutes the lower limit of the by strain engineering adjustable minimal carrier density of the topological surface states and thus of very high mobility.
To sum up, topological surface states have been observed in the three-dimensional topological insulator phase and the Dirac semi-metal phase of HgTe. The existence and accessibility of topological surface states are thus independent of the existence of a bandgap in the bulk band structure. The topological surface states can be accompanied by massive Volkov-Pankratov states. These VPS are created by electric fields, which are routinely applied to adjust the carrier density in semiconductor devices. The theoretical predicted chiral anomaly has been observed in the Dirac semi-metal phase of HgTe. In contrast to theoretical predictions, no indications for the Fermi-arc called disjoint surface states have been observed, but instead the topological and massive Volkov-Pankratov surface states have been found. These states are thus expected for all inversion-induced topological materials. / Der technologische Fortschritt schreitet immer schneller voran. Um diese Entwicklung zu ermöglichen, werden die Strukturen immer kleiner. Das Erreichen atomarer Größen könnte bald die Abkehr von der üblichen Miniaturisierung erfordern und den Sprung zu einer neuen Technologie erzwingen. Die Motivation dieser Arbeit ist es das Verständnis topologischer Materialien zu erweitern und so einen Beitrag zu der Realisierung eines solchen potenziellen Technologiesprungs zu leisten. Eine vielversprechende Möglichkeit zur Aufrechterhaltung der aktuellen Entwicklungsgeschwindigkeit ist die Realisierung eines skalierbaren Quantencomputers. Eine mögliche Umsetzung ist das topologische Quantum-Computing, das zum Beispiel durch induzierte Supraleitung in topologische Oberflächenzustände realisiert werden könnte. Das tiefgehende Verständnis der topologischen Oberflächenzustände und deren Manipulation ist ein Schwerpunkt dieser Arbeit. Der zweite Schwerpunkt wurde kürzlich auch als ein potenzieller Pfad zur Realisierung eines Quantencomputers basierend auf „chiralen Qubits“ vorgeschlagen, nämlich dem Nachweis und die Untersuchung des Transportphänomens der sogenannten chiralen Anomalie in Dirac- und Weyl-Halbmetallen.
Die Untersuchungen in dieser Arbeit wurden am MBE gewachsenen topologischen Material HgTe durchgeführt. HgTe zeichnet sich dadurch aus, dass verschiedene topologische Phasen realisierbar sind. Dazu wird die HgTe-Schicht durch die Wahl entsprechender Substrate verspannt. Als Startpunkt für die Analyse der topologischen Oberflächenzustände habe ich die topologische Isolator-Phase gewählt. Diese wird durch ein gedehntes MBE-Wachstum der HgTe-Schicht auf einem CdTe-Substrat realisiert. Eine hohe Qualität der HgTe-Schicht und Oberfläche wurde dabei mit Hilfe von schützenden \(\text{Cd}_0.7\text{Hg}_0.3\text{Te}\)-Schichten gewährleistet. Wir haben zusätzlich eine Modulationsdoping Schicht in der unteren \(\text{Cd}_0.7\text{Hg}_0.3\text{Te}\)-Schicht eingeführt, die für eine kleine endliche Elektronendichte in der HgTe-Schicht sorgt. Diese Dotierung gewährleistet eine zuverlässige elektrische Kontaktierung. Aus diesen Waferstücken haben wir mit Hilfe optischer Lithografie und trocknen Ätzens so genannte Hall-Bars strukturiert, die aus einem Strompfad mit vier längs und quer angeordneten Spannungsabgriffen besteht. Eine Möglichkeit zur Kontrolle der Ladungsträgerdichte in der HgTe-Schicht wird über eine aufgedampfte Gate-Elektrode geschaffen. Diese Hall-Bars habe ich mit Hilfe von niedrig frequenten Wechselspannungsmessungen
unter hohen Magnetfeldern bis zu 30 T bei tiefen Temperaturen von 2 K in Helium-Kryostaten bzw. 0.1 K in \(\text{He}_3\text{/He}\_4\)-Misch-Kryostaten untersucht.
Die hohe Qualität der HgTe-Schicht spiegelt sich in den zuverlässig erreichten hohen Beweglichkeiten in der Größenordnung von \(0.5 \times 10^{6}\,\text{cm}^{2}/\text{Vs}\) im Elektronenregime und \(0.03 \times 10^6\,\text{cm}^2/\text{Vs}\) im Lochregime wider. Eine Quantisierung des Magneto-Transport ist dadurch schon für kleine Magnetfelder von \(B \gtrsim 0.5\,\text{T}\) beobachtbar. Dies ermöglichte mir die Analyse der Dispersion der Landau Levels und damit der Nachweis der Existenz von sechs zweidimensionalen Transportkanälen. Zwei dieser Kanäle konnten wir mit den topologischen Oberflächenzuständen identifizieren. Den Einfluss der Spannungen, die an der Gate-Elektrode angelegt wurden, haben wir in hoch frequenten Compressibilitätsmessungen festgestellt. In diesen Messungen haben wir für sehr hohe Elektrodenspannungen Hinweise auf zusätzliche massive Volkov-Pankratov Zustände gefunden. Der Name ist dabei gewählt worden, um die Vorhersage derartiger Zustände durch B. A. Volkov und O. A. Pankratov zu würdigen. Den Ursprung der vier weiteren Transportkanäle konnten wir mit Hilfe von Bandstrukturberechnungen auf zusätzliche Oberflächenzustände zurückführen. Die Berechnung haben wir mit Hilfe des Kane Models in der \(k \cdot p\) Näherung unter Beachtung der Hatree Potentiale, welche die angelegte Spannung an der Gate-Elektrode repräsentieren, durchgeführt. Die elektronenartigen topologischen Oberflächenzustände konnten für den ganzen untersuchten Elektrodenspannungsbereich nachgewiesen werden. Wir haben aber auch ein signifikantes und manipulierbares Elektrodenspannungsfenster gefunden, in welchem nur topologische Oberflächenzustände besetzt sind.
Eine Möglichkeit zur Manipulation der Eigenschaften der topologischen Oberflächenzustände ist die Variation der Verspannung mit Hilfe des MBE-Wachstums auf virtuellen Substraten aus alternierenden \(\text{Cd}_{0.5}\text{Zn}_{0.5}\text{Te}\)- und CdTe-Schichten mit einstellbarer Gitterkonstante. Die HgTe-Schicht haben wir durch das Wachstum auf ein entsprechendes virtuelles Substrates druck- anstatt zugverspannt. Die HgTe-Schicht befindet sich dadurch in der Dirac-Halbmetall anstatt der dreidimensionalen topologischen Isolator-Phase. Dirac-
Halbmetalle zeichnen sich durch einen linearen Kreuzungspunkt der Volumenmaterialbänder aus. Ich konnte topologische Oberflächenzustände und massive Volkov-Pankratov Zustände auch in der Dirac-Halbmetall-Phase nachweisen. Dieser Umstand weist die Existenz und Stabilität der topologischen Oberflächenzustände auch ohne Bandlücke in der Bandstruktur des Volumenmaterials nach. Des Weiteren betont die Anwesenheit der topologischen Oberflächenzustände die Relevanz der inhärenten Bandinversion für die Klasse der inversionsinduzierten Dirac-Halbmetalle. In druckverspanntem HgTe habe ich Quanten-Hall-Effekt beobachtet, der nur in zweidimensionalen Systemen auftritt. Ähnliche Beobachtungen wurden auch für andere Dirac-Halbmetalle, wie \(\text{Cd}_3\text{As}_2\), berichtet. Die topologischen Oberflächenzustände schlage ich als einfache und einheitliche Erklärung für diesen zweidimensionalen Transport vor.
Die Anwesenheit linearer Kreuzungspunkte in der Volumenmaterialbandstruktur druckverspannten HgTes konnte ich durch die Beobachtung der chiralen Anomalie nachweisen. Damit konnte ich nicht nur druckverspanntes HgTe als Dirac-Halbmetall nachweisen, sondern auch einen Beitrag zum besseren Verständnis der chiralen Anomalie leisten. Des Weiteren habe elektrodenspannungsabhängige Messungen gezeigt, dass parallel anwesende Oberflächenzustände das Signal der chiralen Anomalie zwar überlagern, dieses aber nicht verhindern. Außerdem habe ich Untersuchungen an unterspannten HgTe Schichten durchgeführt, welche Halbmetalle mit einem Berührungspunkt zweier Bänder mit quadratischer Dispersion darstellen. Auch in diesen Schichten wurde die chirale Anomalie beobachtet. Dies verdeutlicht die Relevanz des Zeeman-Effektes für die Ausbildung der chiralen Anomalie in HgTe. Die chirale Anomalie zeigte eine unerwartet Magnetfeldrichtungsabhängigkeit des Wiederstandes im Bezug zur Stromrichtung. Diese Magnetfeldrichtungsabhängigkeit betont die Notwendigkeit der Beschreibung des Widerstandes als Tensor, damit die dreidimensionale Ausdehnung der experimentellen Proben und der daraus folgenden Effekte, wie dem Planar-Halleffekt, korrekt beschrieben werden. Des Weiteren habe ich eine für dreidimensionale Proben außergewöhnlich stark ausgeprägte Weak-Antilokalisierung beobachtet. Diese könnte spezifisch für topologische Halbmetalle sein, da ähnliche Beobachtungen auch für das Weyl Halbmetall TaA berichtet wurden.
Das Ziel dieser Arbeit war es einen Beitrag zum technologischen Fortschritt durch das bessere Verständnis topologischer Materialen zu leisten. Dieses Ziel konnte somit erreicht werden. Wir können alle Zustände, die wir in dem dreidimensionalen topologischen Isolator zugverspanntes HgTe beobachtet haben, ihrem Ursprung zuordnen. Dies ermöglicht uns die Präparation und Manipulation der gewünschten Zustände für komplexe Bauteile, wie topologische und supraleitende Hybridstrukturen, zu optimieren. Ich konnte auch zum besseren Verständnis der Materialklasse der inversionsinduzierten Dirac-Halbmetalle beigetragen, indem ich die an druckverspannten HgTe gewonnen Erkenntnisse auf die gesamte Materialklasse der inversionsinduzierten Dirac-Halbmetalle verallgemeinern konnte. Dies ist zum Beispiel anhand des Nachweises der Anwesenheit von topologischen Oberflächenzuständen geschehen. Außerdem konnte ich neue Einblicke in die chirale Anomalie gewinnen. Die Existenz linearer Kreuzungspunkte in der Volumenmaterialbandstruktur wurde dabei als notwendige Bedingung bestätigt. Damit konnte ich einen Beitrag zum Verständnis der Grundbausteine für zweimögliche Pfade zu einem potenziellen Quantencomputer in der Form von zug- und druckverspanntem HgTe leisten.
|
49 |
Numerical Simulations of Heavy Fermion Systems: From He-3 Bilayers to Topological Kondo Insulators / Numerische Simulationen von Schwer-Fermionen-Systemen: Von He-3-Doppellagen zu Topologischen Kondo IsolatorenWerner, Jan January 2014 (has links) (PDF)
Even though heavy fermion systems have been studied for a long time, a strong interest in heavy fermions persists to this day. While the basic principles of local moment formation, Kondo effect and formation of composite quasiparticles leading to a Fermi liquid, are under- stood, there remain many interesting open questions. A number of issues arise due to the interplay of heavy fermion physics with other phenomena like magnetism and superconduc- tivity.
In this regard, experimental and theoretical investigations of He-3 can provide valuable insights. He-3 represents a unique realization of a quantum liquid. The fermionic nature of He-3 atoms, in conjunction with the absence of long-range Coulomb repulsion, makes this material an ideal model system to study Fermi liquid behavior.
Bulk He-3 has been investigated for quite some time. More recently, it became possible to prepare and study layered He-3 systems, in particular single layers and bilayers. The pos- sibility of tuning various physical properties of the system by changing the density of He-3 and using different substrate materials makes layers of He-3 an ideal quantum simulator for investigating two-dimensional Fermi liquid phenomenology.
In particular, bilayers of He-3 have recently been found to exhibit heavy fermion behavior. As a function of temperature, a crossover from an incoherent state with decoupled layers to a coherent Fermi liquid of composite quasiparticles was observed. This behavior has its roots in the hybridization of the two layers. The first is almost completely filled and subject to strong correlation effects, while the second layer is only partially filled and weakly correlated. The quasiparticles are formed due to the Kondo screening of localized moments in the first layer by the second-layer delocalized fermions, which takes place at a characteristic temperature scale, the coherence scale Tcoh.
Tcoh can be tuned by changing the He-3 density. In particular, at a certain critical filling,
the coherence scale is expected to vanish, corresponding to a divergence of the quasiparticle effective mass, and a breakdown of the Kondo effect at a quantum critical point. Beyond the critical point, the layers are decoupled. The first layer is a local moment magnet, while the second layer is an itinerant overlayer.
However, already at a filling smaller than the critical value, preempting the critical point, the onset of a finite sample magnetization was observed. The character of this intervening phase remained unclear.
Motivated by these experimental observations, in this thesis the results of model calcula- tions based on an extended Periodic Anderson Model are presented. The three particle ring exchange, which is the dominant magnetic exchange process in layered He-3, is included in the model. It leads to an effective ferromagnetic interaction between spins on neighboring sites. In addition, the model incorporates the constraint of no double occupancy by taking the limit of large local Coulomb repulsion.
By means of Cellular DMFT, the model is investigated for a range of values of the chemical potential µ and inverse temperature β = 1/T . The method is a cluster extension to the Dy- namical Mean-Field Theory (DMFT), and allows to systematically include non-local correla- tions beyond the DMFT. The auxiliary cluster model is solved by a hybridization expansion CTQMC cluster solver, which provides unbiased, numerically exact results for the Green’s function and other observables of interest.
As a first step, the onset of Fermi liquid coherence is studied. At low enough temperature, the self-energy is found to exhibit a linear dependence on Matsubara frequency. Meanwhile, the spin susceptibility crossed over from a Curie-Weiss law to a Pauli law. Both observations serve as fingerprints of the Fermi liquid state.
The heavy fermion state appears at a characteristic coherence scale Tcoh. This scale depends strongly on the density. While it is rather high for small filling, for larger filling Tcoh is increas- ingly suppressed. This involves a decreasing quasiparticle residue Z ∼ Tcoh and an enhanced mass renormalization m∗/m ∼ Tcoh−1. Extrapolation leads to a critical filling, where the co-
herence scale is expected to vanish at a quantum critical point. At the same time, the effective mass diverges. This corresponds to a breakdown of the Kondo effect, which is responsible for the formation of quasiparticles, due to a vanishing of the effective hybridization between the layers.
Taking only single-site DMFT results into account, the above scenario seems plausible. However, paramagnetic DMFT neglects the ring exchange interaction completely. In or- der to improve on this, Cellular DMFT simulations are conducted for small clusters of size Nc = 2 and 3. The results paint a different physical picture. The ring exchange, by favor- ing a ferromagnetic alignment of spins, competes with the Kondo screening. As a result, strong short-range ferromagnetic fluctuations appear at larger values of µ. By lowering the temperature, these fluctuations are enhanced at first. However, for T < Tcoh they are increas- ingly suppressed, which is consistent with Fermi liquid coherence. However, beyond a certain threshold value of µ, fluctuations persist to the lowest temperatures. At the same time, while not apparent in the DMFT results, the total occupation n increases quite strongly in a very narrow range around the same value of µ. The evolution of n with µ is always continuous, but hints at a discontinuity in the limit Nc → ∞. This first-order transition breaks the Kondo effect. Beyond the transition, a ferromagnetic state in the first layer is established, and the second layer becomes a decoupled overlayer.
These observations provide a quite appealing interpretation of the experimental results. As a function of chemical potential, the Kondo breakdown quantum critical point is preempted by a first-order transition, where the layers decouple and the first layer turns into a ferromagnet. In the experimental situation, where the filling can be tuned directly, the discontinuous transition is mirrored by a phase separation, which interpolates between the Fermi liquid ground state at lower filling and the magnetic state at higher filling. This is precisely the range of the intervening phase found in the experiments, which is characterized by an onset of a finite sample magnetization.
Besides the interplay of heavy fermion physics and magnetic exchange, recently the spin- orbit coupling, which is present in many heavy fermion materials, attracted a lot of interest. In the presence of time-reversal symmetry, due to spin-orbit coupling, there is the possibility of a topological ground state.
It was recently conjectured that the energy scale of spin-orbit coupling can become dom- inant in heavy fermion materials, since the coherence scale and quasiparticle bandwidth are rather small. This can lead to a heavy fermion ground state with a nontrivial band topology; that is, a topological Kondo insulator (TKI). While being subject to strong correlation effects, this state must be adiabatically connected to a non-interacting, topological state.
The idea of the topological ground state realized in prototypical Kondo insulators, in par- ticular SmB6, promises to shed light on some of the peculiarities of these materials, like a residual conductivity at the lowest temperatures, which have remained unresolved so far.
In this work, a simple two-band model for two-dimensional topological Kondo insulators is devised, which is based on a single Kramer’s doublet coupled to a single conduction band. The model is investigated in the presence of a Hubbard interaction as a function of interaction strength U and inverse temperature β. The bulk properties of the model are obtained by DMFT, with a hybridization expansion CTQMC impurity solver. The DMFT approximation of a local self-energy leads to a very simple way of computing the topological invariant.
The results show that with increasing U the system can be driven through a topological phase transition. Interestingly, the transition is between distinct topological insulating states, namely the Γ-phase and M-phase. This appearance of different topological phases is possible due to the symmetry of the underlying square lattice. By adiabatically connecting both in- teracting states with the respective non-interacting state, it is shown that the transition indeed drives the system from the Γ-phase to the M-phase.
A different behavior can be observed by pushing the bare position of the Kramer’s doublet to higher binding energies. In this case, the non-interacting starting point has a trivial band topology. By switching on the interaction, the system can be tuned through a quantum phase transition, with a closing of the band gap. Upon reopening of the band gap, the system is in the Γ-phase, i. e. a topological insulator. By increasing the interaction strength further, the system moves into a strongly correlated regime. In fact, close to the expected transition to the M phase, the mass renormalization becomes quite substantial. While absent in the para- magnetic DMFT simulations conducted, it is conceivable that instead of a topological phase transition, the system undergoes a time-reversal symmetry breaking, magnetic transition.
The regime of strong correlations is studied in more detail as a function of temperature, both in the bulk and with open boundary conditions. A quantity which proved very useful is the bulk topological invariant Ns, which can be generalized to finite interaction strength and temperature. In particular, it can be used to define a temperature scale T ∗ for the onset of the topological state. Rescaling the results for Ns, a nice data collapse of the results for different values of U, from the local moment regime to strongly mixed valence, is obtained. This hints at T ∗ being a universal low energy scale in topological Kondo insulators. Indeed, by comparing T ∗ with the coherence scale extracted from the self-energy mass renormalization, it is found that both scales are equivalent up to a constant prefactor. Hence, the scale T ∗ obtained from the temperature dependence of topological properties, can be used as an independent measure for Fermi liquid coherence. This is particularly useful in the experimentally relevant mixed valence regime, where charge fluctuations cannot be neglected. Here, a separation of the energy scales related to spin and charge fluctuations is not possible.
The importance of charge fluctuations becomes evident in the extent of spectral weight transfer as the temperature is lowered. For mixed valence, while the hybridization gap emerges, a substantial amount of spectral weight is shifted from the vicinity of the Fermi level to the lower Hubbard band. In contrast, this effect is strongly suppressed in the local moment regime.
In addition to the bulk properties, the spectral function for open boundaries is studied as a function of temperature, both in the local moment and mixed valence regime. This allows an investigation of the emergence of topological edge states with temperature. The method used here is the site-dependent DMFT, which is a generalization of the conventional DMFT to inhomogeneous systems. The hybridization expansion CTQMC algorithm is used as impurity solver.
By comparison with the bulk results for the topological quantity Ns, it is found that the
temperature scale for the appearance of the topological edge states is T ∗, both in the mixed valence and local moment regime. / Obwohl Heavy-Fermion-Systemen bereits seit vielen Jahrzehnten intensiv untersucht werden, ist auch heute ein großes Interesse an Heavy Fermions vorhanden. Obwohl die grundlegenden Konzepte wie die Ausbildung lokaler Momente, der Kondo-Effekt und die zur Entstehung einer Fermi-Flüssigkeit führenden, koha¨renten Quasiteilchen gut verstanden sind, gibt es weiterhin viele offene Fragestellungen. Diese ergeben sich u.a. aus dem Zusammenspiel von Heavy Fermions mit anderen Phänomenen wie Magnetismus und Supraleitung.
In dieser Hinsicht können Untersuchungen an He-3 sehr wertvolle Einsichten liefern. Das liegt darin begründet, dass He-3 eine einzigartige Realisierung einer Quanten-Flu¨ssigkeit darstellt. Da He-3-Atome Fermionen sind, und da die langreichweitige Coulomb-Abstoßung keine Rolle spielt, ist dieses Material in idealer Weise dazu geeignet, um Fermi-Flüssigkeiten zu studieren.
In drei Dimensionen wird He-3 bereits seit La¨ngerem untersucht. Vor Kurzem gelang es dann auch, Schichtsysteme aus He-3 zu erzeugen und zu untersuchen. Damit ergibt sich die Möglichkeit, die Phänomenologie zweidimensionaler Fermi-Flu¨ssigkeiten detailliert zu unter- suchen. He-3-Schichtsysteme stellen einen idealen Quanten-Simulator für diese Systeme dar, da sich durch Variation der He-3-Konzentration und durch die Wahl verschiedener Substrat- materialien unterschiedliche Eigenschaften der Fermi-Flüssigkeit gezielt einstellen lassen.
So wurde in He-3-Doppellagen ein Heavy-Fermion-Verhalten nachgewiesen. In Abha¨ngig- keit der Temperatur wurde ein kontinuierlicher Übergang von einem inkohärenten Zustand mit entkoppelten Lagen zu einer koha¨renten Fermi-Flüssigkeit aus Quasiteilchen mit gemischtem
Charakter beobachtet. Dieses Verhalten hat seinen Ursprung in der Hybridisierung der beiden Lagen. Die erste Lage ist beinahe vollständig gefüllt und von starken Korrelationseffekten beeinflusst, wa¨hrend die zweite Lage nur teilgefüllt ist und Korrelationen eine geringe Rolle spielen. Die Quasiteilchen entstehen bei der Kondo-Abschirmung der lokalisierten Momente der ersten Lage durch die delokalisierten Fermionen der zweiten Lage, die bei einer charakteristischen Temperatur-Skala, der Kohärenz-Skala Tcoh stattfindet.
Durch das Verändern der Dichte von He-3-Atomen lässt sich Tcoh variieren. Dabei zeigte
sich, dass bei einer kritischen Dichte ein Verschwinden der Kohärenzskala zu erwarten ist. Dies korrespondiert mit einer Divergenz der effektiven Masse der Quasiteilchen, und einem Zusammenbrechen des Kondo-Effekts an einem quantenkritischen Punkt. Jenseits dieses kritischen Punktes sind die Lagen vollständig entkoppelt. Die erste Lage ist ein Magnet von lokalen Momenten, während die zweite Lage einen itineranten Overlayer darstellt.
Allerdings wurde bereits bei einer Dichte, die kleiner ist als der kritische Wert, die Herausbildung einer endlichen Magnetisierung der Probe beobachtet. Der Charakter dieser Zwischenphase, die dem kritischen Punkt voraus geht, blieb allerdings ungeklärt.
In dieser Arbeit werden Resultate von Modellrechnungen eines erweiterten Periodischen Anderson Modell vorgestellt, die von den experimentellen Beobachtungen motiviert wur- den. Dabei ist der Ringaustausch dreier Teilchen, also der dominante magnetische Aus- tauschmechanismus in Schichtsystemen aus He-3, im Modell explizit enthalten. Dieser fu¨hrt zu einer effektiv ferromagnetischen Wechselwirkung zwischen Spins auf benachbarten Gitterplätzen. Zudem berücksichtigt das Modell die Bedingung, dass keine Doppelbesetzung von Gitterplätzen auftritt, indem der Grenzfall einer sehr großen lokalen Coulomb-Abstoßung angenommen wird.
Mit Hilfe der Cellular DMFT wird das Modell als Funktion der Parameter chemisches Potential µ und inverse Temperature β = 1/T untersucht. Diese Methode stellt eine Cluster- Erweiterung der Dynamical Mean-Field Theory (DMFT) dar, und erlaubt es, auf systemati- sche Weise nichtlokale Korrelationen zu berücksichtigen, die über die DMFT-Approximation hinaus gehen. Für die Lösung der in jedem Iterationsschritt auftretenden Cluster-Modelle wird ein CTQMC-Cluster-Lo¨ser eingesetzt, der auf der Hybridisierungentwicklung basiert. Dieser liefert unverzehrte, numerisch exakte Ergebnisse für die Greensche Funktion und andere Observablen.
In einem ersten Schritt wird die Entstehung der kohärenten Fermi-Flüssigkeitsphase unter- sucht. Bei ausreichend tiefer Temperatur zeigt die Selbst-Energie in Matsubara-Frequenzen eine lineare Frequenzabhängigkeit. Gleichzeitig findet in der Spin-Suszeptibilität ein Über-
gang von einem Verhalten nach Curie-Weiss-Gesetz zu einem Pauli-Verhalten statt. Beide Beobachtungen sind eindeutige Hinweise auf einen Fermi-Flüssigkeitszustand.
Heavy Fermions bilden sich unterhalb der Kohärenz-Skala Tcoh aus. Diese hängt stark von der He-3-Dichte ab. Tcoh ist bei kleiner Füllung recht hoch, wird bei größerer Fu¨llung allerdings zunehmend unterdrückt. Dies bedingt ein abnehmendes Quasiteilchen-Gewicht Z ∼ Tcoh und eine zunehmende Massenrenormierung m∗/m ∼ Tcoh−1. Durch Extrapolation erhält man einen quantenkritischen Punkt, an dem die Kohärenzskala verschwindet. Gleichzeitig divergiert hier die effektive Masse. Dies entspricht dem Zusammenbrechen des Kondo- Effekts, der für die Entstehung der Quasiteilchen verantwortlich ist, da die effektive Hybri- disierung zwischen den Lagen verschwindet.
Berücksichtigt man nur Ergebnisse von paramagnetischer DMFT, so erscheint das obige Szenario plausibel. Allerdings wird in diesem Fall der Ringaustausch komplett vernachlässigt. Um diese Situation zu verbessern, werden Simulationen mit Hilfe von Cellular DMFT an kleinen Clustern der Gro¨ßen Nc = 2 and 3 durchgeführt. Die Ergebnisse zeichnen ein anderes physikalisches Bild. Der Ringaustausch konkurriert mit der Kondoabschirmung der lokalen Momente, da er eine ferromagnetische Ausrichtung der Spins bevorzugt. Daraus resultieren auf kurzen Längenskalen für steigendes µ starke ferromagnetische Fluktuationen. Mit sinkender Temperatur werden diese zunächst verstärkt, dann für T < Tcoh allerdings zunehmend unterdrückt. Dies ist konsistent mit einer kohärenten Fermi-Flüssigkeit. Bei Überschreiten eines gewissen Schwellwertes für µ bestehen die starken Fluktuationen bis zu den tiefsten Temperaturen, die in der Simulation erreicht wurden. Gleichzeitig, zeigt sich ein starker Anstieg der Gesamtbesetzung n in einem engen Fenster um denselben Schwellwert von µ. Dieses Verhalten fehlt in den DMFT-Resultaten vollständig. Die Entwicklung von n mit µ ist stets kontinuierlich, weist allerdings auf eine Diskontinuität im Grenzfall Nc → ∞ hin. Dieser Ü bergang erster Ordnung lässt den Kondo-Effekt abrupt zusammenbrechen. Jenseits des Übergangs ist in der ersten Lage ein ferromagnetischer Zustand ausgebildet, während die zweite Lage ein davon entkoppelter Overlayer wird.
...
|
50 |
Epitaxy and Spectroscopy of Two-Dimensional Adatom Systems: the Elemental Topological Insulator Indenene on SiC / Epitaxie und Spektroskopie zweidimensionaler Adatom Systeme: der elementare Topologische Isolator Indenene auf SiCBauernfeind, Maximilian Josef Xaver January 2023 (has links) (PDF)
Two-dimensional (2D) topological insulators are a new class of materials with properties that are
promising for potential future applications in quantum computers. For example, stanene represents
a possible candidate for a topological insulator made of Sn atoms arranged in a hexagonal
lattice. However, it has a relatively fragile low-energy spectrum and sensitive topology. Therefore,
to experimentally realize stanene in the topologically non-trivial phase, a suitable substrate
that accommodates stanene without compromising these topological properties must be found.
A heterostructure consisting of a SiC substrate with a buffer layer of adsorbed group-III elements
constitutes a possible solution for this problem. In this work, 2D adatom systems of Al and In
were grown epitaxially on SiC(0001) and then investigated structurally and spectroscopically by
scanning tunneling microscopy (STM) and photoelectron spectroscopy.
Al films in the high coverage regime \( (\Theta_{ML}\approx2\) ML\( ) \) exhibit unusually large, triangular- and
rectangular-shaped surface unit cells. Here, the low-energy electron diffraction (LEED)
pattern is brought into accordance with the surface topography derived from STM. Another Al
reconstruction, the quasi-one-dimensional (1D) Al phase, exhibits a striped surface corrugation,
which could be the result of the strain imprinted by the overlayer-substrate lattice mismatch.
It is suggested that Al atoms in different surface areas can occupy hexagonal close-packed and
face-centered cubic lattice sites, respectively, which in turn lead to close-packed transition regions
forming the stripe-like corrugations. On the basis of the well-known herringbone reconstruction
from Au(111), a first structural model is proposed, which fits well to the structural data from
STM. Ultimately, however, thermal treatments of the sample could not generate lower coverage
phases, i.e. in particular, a buffer layer structure.
Strong metallic signatures are found for In high coverage films \( (\Theta_{ML}\approx3\) to \(2\) ML\() \) by
scanning tunneling spectroscopy (STS) and angle-resolved photoelectron spectroscopy (ARPES),
which form a \( (7\times7) \), \( (6\times4\sqrt{3}) \), and \( (4\sqrt{3}\times4\sqrt{3}) \) surface reconstruction. In all these In phases
electrons follow the nearly-free electron model. Similar to the Al films, thermal treatments could
not obtain the buffer layer system.
Surprisingly, in the course of this investigation a triangular In lattice featuring a \( (1\times1) \)
periodicity is observed to host massive Dirac-like bands at \( K/K^{\prime} \) in ARPES. Based on this
strong electronic similarity with graphene at the Brillouin zone boundary, this new structure is
referred to as \textit{indenene}. An extensive theoretical analysis uncovers the emergence of an electronic
honeycomb network based on triangularly arranged In \textit{p} orbitals. Due to strong atomic spin-orbit
coupling and a comparably small substrate-induced in-plane inversion symmetry breaking this
material system is rendered topologically non-trivial. In indenene, the topology is intimately
linked to a bulk observable, i.e., the energy-dependent charge accumulation sequence within the
surface unit cell, which is experimentally exploited in STS to confirm the non-trivial topological
character. The band gap at \( K/K^{\prime} \), a signature of massive Dirac fermions, is estimated by
ARPES to approximately 125 meV. Further investigations by X-ray standing wave, STM, and
LEED confirm the structural properties of indenene. Thus, this thesis presents the growth and
characterization of the novel quantum spin Hall insulator material indenene. / Zweidimensionale (2D) topologische Isolatoren sind eine neue Materialklasse mit vielversprechenden
Eigenschaften für potenzielle zukünftige Anwendungen in Quantencomputern. Stanene stellt
hier beispielsweise einen möglichen Kandidaten für einen topologischen Isolator dar. Diese 2D-Schicht
besteht aus Sn-Atomen, angeordnet in einem hexagonalen Gitter. Allerdings weist
dieses Gitter ein relativ fragiles Niederenergiespektrum und eine empfindliche Topologie auf.
Um Stanene daher in der topologisch nicht-trivialen Phase experimentell realisieren zu können,
muss ein geeignetes Substrat gefunden werden, das Stanene aufnehmen kann, ohne die topologischen
Eigenschaften zu beeinträchtigen. Eine Heterostruktur aus einem SiC-Substrat mit
einer Pufferschicht aus adsorbierten Gruppe-III Elementen stellt hier eine mögliche Lösung für
dieses Problem dar. Im Hinblick darauf wurden für diese Arbeit 2D-Adatomsysteme aus Al und
In epitaktisch auf SiC(0001) gewachsen und mittels Rastertunnelmikroskopie (engl.: scanning
tunneling microscopy, STM) und Photoelektronenspektroskopie strukturell und spektroskopisch
untersucht.
Al-Schichten mit hoher Bedeckung \( (\Theta_{ML}\approx2\) ML\( ) \) weisen ungewöhnlich große, dreieckig
und rechteckig geformte Oberflächeneinheitszellen auf. Hierbei wird das Beugungsmuster der
niederenergetischen Elektronenbeugung (engl.: low-energy electron diffraction, LEED) mit der
aus STM abgeleiteten Oberflächentopographie in Einklang gebracht. Eine andere Al-Rekonstruktion,
die quasi-eindimensionale (1D) Al-Phase, zeigt eine gestreifte Oberflächenkorrugation, die
ein Ergebnis der Verspannung durch die Fehlanpassung des Al-Gitters auf dem Substratgitter
sein könnte. Es wird vorgeschlagen, dass Al-Atome in verschiedenen Oberflächenbereichen sowohl
jeweils hexagonal-dichtgepackte als auch kubisch flächenzentrierte Gitterplätze einnehmen können.
In Übergangsregionen zwischen beiden Bereichen erzeugt dies dicht gepackte Al-Atome,
die wiederum die streifenartigen Korrugationen hervorrufen. Auf der Basis der bekannten Fischgrätenrekonstruktion
von Au(111) wird ein erstes Strukturmodell vorgeschlagen, das gut mit
strukturellen STM-Daten übereinstimmt. Letztendlich konnten jedoch durch thermische Behandlungen
der Probe keine Phasen mit geringerer Bedeckung, das heißt insbesondere die Pufferschichtstruktur,
erzeugt werden.
In-Hochbedeckungsphasen \( (\Theta_{ML}\approx3\) to \(2\) ML\() \) weisen ein ausgeprägtes metallisches Verhalten
auf in der Rastertunnelspektroskopie (engl.: scanning tunneling spectroscopy, STS) und
winkelaufgelösten Photoelektronenspektroskopie (engl.: angle-resolved photoelectron spectroscopy,
ARPES). Zudem bilden diese Phasen eine \( (7\times7) \), \( (6\times4\sqrt{3}) \), and \( (4\sqrt{3}\times4\sqrt{3}) \)-Oberflächenrekonstruktion
aus. In all diesen Phasen folgen die Elektronen dem Modell der quasifreien Elektronen. Ähnlich zu den
Al-Filmen konnte auch hier nach thermischen Behandlungen der Probe keine Pufferschichtstruktur erzeugt werden.
Überraschenderweise tritt im Laufe dieser Untersuchung ein Dreiecksgitter aus In-Atomen
mit einer \( (1\times1) \)-Periodizität auf, das bei \( K/K^{\prime} \) massive Dirac-artige Bänder in ARPES zeigt.
Aufgrund der starken Ähnlichkeit mit der Graphene-Bandstruktur am Brillouinzonenrand, wird
dieses neuartige Materialsystem \textit{Indenene} benannt. Eine umfangreiche theoretische Untersuchung
legt die Entstehung eines elektronischen Honigwabennetzwerks offen, dass sich aufgrund von
dreieckig angeordneten In \textit{p}-Orbitalen bildet. Durch starke atomare Spin-Bahn-Wechselwirkung
und einen vergleichsweisen schwachen substratinduzierten Inversionssymmetriebruch in der Ebene,
ist dieses Materialsystem topologisch nicht-trivial. In Indenene ist die Topologie eng mit einer
Volumenobservablen, genauer die energieabhängige Ladungsakkumulationsequenz innerhalb der
Oberflächeneinheitszelle, verknüpft. Diese Sequenz wird mittels STS experimentell ausgenutzt,
um den topologisch nicht-trivialen Charakter zu bestätigen. Die Bandlücke bei \( K/K^{\prime} \), charakteristisch
für massive Dirac-Fermionen, wird mittels ARPES auf ungefähr 125 meV abgeschätzt.
Weitere Untersuchungen basierend auf stehenden Röntgenwellen, STM, und LEED bestätigen die
strukturellen Eigenschaften von Indenene. Dementsprechend wird in dieser Arbeit dasWachstum
und auch die Charakterisierung des neuartigen Quanten Spin Hall Isolators Indenene vorgestellt.
|
Page generated in 0.0523 seconds