Spelling suggestions: "subject:"isoparametric"" "subject:"isoparametrico""
1 |
Subvariedades isoparamétricas do espaço Euclidiano / Isoparametric submanifolds of Euclidian spaceChamorro, Jaime Leonardo Orjuela 25 March 2008 (has links)
O presente trabalho tem por objeto fazer uma introdução ao estudo das subvariedades isoparamétricas do espaço Euclidiano. Começamos com uma introdução ao desenvolvimento histórico desses objetos. A seguir apresentamos os conceitos básicos da teoria de subvariedades de formas espaciais. Deduzimos as equações fundamentais de primeira e segunda ordem e demonstramos o teorema fundamental da teoria de subvariedades. Em seguida damos a definição de subvariedade isoparamétrica e desenvolvemos conceitos elementares para o caso do espaço Euclidiano como são normais de curvatura, grupo de Coxeter, câmera de Weyl e variedades paralelas e focais. Provamos dois teoremas referentes à decomposição de subvariedades isoparamétricas do espaço Euclidiano adaptando ferramentas usadas em [HL97] para ocaso de subvariedades isoparamétricas de espaços de Hilbert. Demonstramos o teorema da fatia e discutimos sobre subvariedades isoparamétricas desde o ponto de vista clássico, a saber, aplicações isoparamétricas. Concluímos com alguns exemplos: hipersuperfécies isoparamétricas da esfera e órbitas principais da ação adjunta de um grupo de Lie sobre a respectiva álgebra de Lie. / The goal of this dissertation is to present an introduction to the study of isoparametric submanifolds of Euclidean space. We begin with an introduction to the history of the subject. Then we present the basic results of submanifold theory of space forms. We compute the fundamental equations of first and second order, and we prove the fundamental theorem of submanifold theory. Next, we define isoparametric submanifolds and discuss some basic constructions, as curvature normals, Coxeter groups, Weyl chambers and parallel and focal submanifolds. We prove two decomposition theorems about isoprametric submanifolds using techniques that we learnt from [HL97], paper in which the case of submanifolds of Hilbert spaces is studied. Then we prove slice theorem. We also discuss those submanifold from the classical point of view, namely, isoparametric maps. We finish by explaining some examples: isoparametric hipersurfaces of spheres and principal orbits of the adjoint action of a Lie group on its Lie algebra.
|
2 |
Subvariedades isoparamétricas do espaço Euclidiano / Isoparametric submanifolds of Euclidian spaceJaime Leonardo Orjuela Chamorro 25 March 2008 (has links)
O presente trabalho tem por objeto fazer uma introdução ao estudo das subvariedades isoparamétricas do espaço Euclidiano. Começamos com uma introdução ao desenvolvimento histórico desses objetos. A seguir apresentamos os conceitos básicos da teoria de subvariedades de formas espaciais. Deduzimos as equações fundamentais de primeira e segunda ordem e demonstramos o teorema fundamental da teoria de subvariedades. Em seguida damos a definição de subvariedade isoparamétrica e desenvolvemos conceitos elementares para o caso do espaço Euclidiano como são normais de curvatura, grupo de Coxeter, câmera de Weyl e variedades paralelas e focais. Provamos dois teoremas referentes à decomposição de subvariedades isoparamétricas do espaço Euclidiano adaptando ferramentas usadas em [HL97] para ocaso de subvariedades isoparamétricas de espaços de Hilbert. Demonstramos o teorema da fatia e discutimos sobre subvariedades isoparamétricas desde o ponto de vista clássico, a saber, aplicações isoparamétricas. Concluímos com alguns exemplos: hipersuperfécies isoparamétricas da esfera e órbitas principais da ação adjunta de um grupo de Lie sobre a respectiva álgebra de Lie. / The goal of this dissertation is to present an introduction to the study of isoparametric submanifolds of Euclidean space. We begin with an introduction to the history of the subject. Then we present the basic results of submanifold theory of space forms. We compute the fundamental equations of first and second order, and we prove the fundamental theorem of submanifold theory. Next, we define isoparametric submanifolds and discuss some basic constructions, as curvature normals, Coxeter groups, Weyl chambers and parallel and focal submanifolds. We prove two decomposition theorems about isoprametric submanifolds using techniques that we learnt from [HL97], paper in which the case of submanifolds of Hilbert spaces is studied. Then we prove slice theorem. We also discuss those submanifold from the classical point of view, namely, isoparametric maps. We finish by explaining some examples: isoparametric hipersurfaces of spheres and principal orbits of the adjoint action of a Lie group on its Lie algebra.
|
3 |
Implementation Of Mesh Generation AlgorithmsYildiz, Ozgur 01 January 2003 (has links) (PDF)
In this thesis, three mesh generation software packages have been developed and
implemented. The first two were based on structured mesh generation algorithms
and used to solve structured surface and volume mesh generation problems of
three-dimensional domains. Structured mesh generation algorithms were based
on the concept of isoparametric coordinates. In structured surface mesh
generation software, quadrilateral mesh elements were generated for complex
three-dimensional surfaces and these elements were then triangulated in order to
obtain high-quality triangular mesh elements. Structured volume mesh
generation software was used to generate hexahedral mesh elements for volumes.
Tetrahedral mesh elements were constructed from hexahedral elements using
hexahedral node insertion method. The results, which were produced by the mesh
generation algorithms, were converted to a required format in order to be saved in output files. The third software package is an unstructured quality tetrahedral
mesh generator and was used to generate exact Delaunay tetrahedralizations,
constrained (conforming) Delaunay tetrahedralizations and quality conforming
Delaunay tetrahedralizations. Apart from the mesh generation algorithms used
and implemented in this thesis, unstructured mesh generation techniques that can
be used to generate quadrilateral, triangular, hexahedral and tetrahedral mesh
elements were also discussed.
|
4 |
[en] SINGULAR RIEMANNIAN FOLIATIONS WITH SECTIONS AND TRANSNORMAL MAPS / [pt] FOLHEAÇÕES RIEMANNIANAS SINGULARES COM SEÇÕES E APLICAÇÕES TRANSNORMAISMARCOS MARTINS ALEXANDRINO DA SILVA 25 February 2003 (has links)
[pt] Um resultado clássico da teoria de grupos de Lie garante
que as órbitas da ação adjunta de um grupo de Lie compacto
interceptam um toro máximo ortogonalmente. Esta ação é um
exemplo das chamadas ações polares. Ações polares são ações
de grupos compactos de isometrias que admitem seções
(subvariedades totalmente geodésicas que interceptam as
órbitas ortogonalmente). Ações polares e subvariedades
isoparamétricas são casos particulares das chamadas
folheações riemannianas singulares com seções,assunto que é
estudado nesta tese. Além de apresentarmos resultados sobre
essas folheações singulares apresentamos também resultados
sobre as chamadas aplicações transnormais (generalizações
das aplicações isoparamétricas) destacando como estes
objetos estão relacionados. / [en] It follows from the classical Lie group theory that the
orbits of an adjoint action of a compact Lie group
intercept a maximal toru in a orthogonal way.
This is an example of the so called Polar Action. A compact
isometric action is said to be Polar if it admits
sections, i.e. totally geodesic submanifolds that intercept
the orbits orthogonally. Polar Actions and isoparametric
manifolds are examples of a more general structure, the so
called singular Riemannian Foliation with Section, the main
subject of the thesis. Besides the results about these
singular foliations we show also some results about
transnormal maps (generalization of isoparametric maps) and
stress the its connections with the singulare riemannian
foliation with section.
|
5 |
Hipersuperfícies em espaços produto com curvaturas principais constantes / Hypersurfaces in product spaces with constant principal curvaturesSantos, Eliane da Silva dos 29 November 2013 (has links)
Neste trabalho, classificamos localmente as hipersuperfcies dos espaços produto S n × R e H n × R, n 6 = 3, com g curvaturas principais constantes e distintas, g {1, 2, 3}. Verifi- camos que tais hipersuperfcies são isoparamétricas de Q nc × R. Além disso, encontramos uma condição necessária e suficiente para que uma hipersuperfcie isoparamétrica de Q nc × R que possui fibrado normal plano, quando observada como uma subvariedade de codimensão dois de R n+2 contendo S n × R e de L n+2 contendo H n × R, tenha curvaturas principais constantes. / In this work, we classify locally the hypersurfaces in product spaces S n × R and H n × R, n 6 = 3, with g distinct constant principal curvatures, g {1, 2, 3}. We verify that such hy- persurfaces are isoparametric in Q nc × R. Furthermore, we find a necessary and sufficient condition for an isoparametric hypersurface in Q nc × R with flat normal bundle, when re- garded as a submanifold with codimension two of the flat spaces R n+2 containing S n × R and L n+2 containing H n × R, having constant principal curvatures.
|
6 |
SCRUBS.BYU a Two Dimensional Finite Element Package for Continuum Analysis Using Quadratic Isoparametric ElementsLong, Michael Glenn 01 April 1983 (has links) (PDF)
This thesis develops a two dimensional, axisymmetric finite element package for solving continuum problems including rubbleization subsidence and nonlinear fracture mechanics. This package includes both a user friendly preprocessor, PRESCRUBS.BYU, and a versatile analysis code SCRUBS.BYU. PRESCRUBS.BYU systematically creates the data file necessary to run SCRUBS.BYU. SCRUBS.BYU provides many options of nonlinear static analysis using either linear or quadratic isoparametric finite elements. Sample problems are presented that demonstrate the capabilities of this package.
|
7 |
NURBS-Enhanced Finite Element Method (NEFEM)Sevilla Cárdenas, Rubén 24 July 2009 (has links)
Aquesta tesi proposa una millora del clàssic mètode dels elements finits (finite element method, FEM) per a un tractament eficient de dominis amb contorns corbs: el denominat NURBS-enhanced finite element method (NEFEM). Aquesta millora permet descriure de manera exacta la geometría mitjançant la seva representació del contorn CAD amb non-uniform rational B-splines (NURBS), mentre que la solució s'aproxima amb la interpolació polinòmica estàndard. Per tant, en la major part del domini, la interpolació i la integració numèrica són estàndard, retenint les propietats de convergència clàssiques del FEM i facilitant l'acoblament amb els elements interiors. Només es requereixen estratègies específiques per realitzar la interpolació i la integració numèrica en elements afectats per la descripció del contorn mitjançant NURBS.La implementació i aplicació de NEFEM a problemes que requereixen una descripció acurada del contorn són, també, objectius prioritaris d'aquesta tesi. Per exemple, la solució numèrica de les equacions de Maxwell és molt sensible a la descripció geomètrica. Es presenta l'aplicació de NEFEM a problemes d'scattering d'ones electromagnètiques amb una formulació de Galerkin discontinu. S'investiga l'habilitat de NEFEM per obtenir solucions precises amb malles grolleres i aproximacions d'alt ordre, i s'exploren les possibilitats de les anomenades malles NEFEM, amb elements que contenen singularitats dintre d'una cara o aresta d'un element. Utilitzant NEFEM, la mida de la malla no està controlada per la complexitat de la geometria. Això implica una dràstica diferència en la mida dels elements i, per tant, suposa un gran estalvi tant des del punt de vista de requeriments de memòria com de cost computacional. Per tant, NEFEM és una eina poderosa per la simulació de problemes tridimensionals a gran escala amb geometries complexes. D'altra banda, la simulació de problemes d'scattering d'ones electromagnètiques requereix mecanismes per aconseguir una absorció eficient de les ones scattered. En aquesta tesi es discuteixen, optimitzen i comparen dues tècniques en el context de mètodes de Galerkin discontinu amb aproximacions d'alt ordre.La resolució numèrica de les equacions d'Euler de la dinàmica de gasos és també molt sensible a la representació geomètrica. Quan es considera una formulació de Galerkin discontinu i elements isoparamètrics lineals, una producció espúria d'entropia pot evitar la convergència cap a la solució correcta. Amb NEFEM, l'acurada imposició de la condició de contorn en contorns impenetrables proporciona resultats precisos inclús amb una aproximació lineal de la solució. A més, la representació exacta del contorn permet una imposició adequada de les condicions de contorn amb malles grolleres i graus d'interpolació alts. Una propietat atractiva de la implementació proposada és que moltes de les rutines usuals en un codi d'elements finits poden ser aprofitades, per exemple rutines per realitzar el càlcul de les matrius elementals, assemblatge, etc. Només és necessari implementar noves rutines per calcular les quadratures numèriques en elements corbs i emmagatzemar el valor de les funciones de forma en els punts d'integració. S'han proposat vàries tècniques d'elements finits corbs a la literatura. En aquesta tesi, es compara NEFEM amb altres tècniques populars d'elements finits corbs (isoparamètics, cartesians i p-FEM), des de tres punts de vista diferents: aspectes teòrics, implementació i eficiència numèrica. En els exemples numèrics, NEFEM és, com a mínim, un ordre de magnitud més precís comparat amb altres tècniques. A més, per una precisió desitjada NEFEM és també més eficient: necessita un 50% dels graus de llibertat que fan servir els elements isoparamètrics o p-FEM per aconseguir la mateixa precisió. Per tant, l'ús de NEFEM és altament recomanable en presència de contorns corbs i/o quan el contorn té detalls geomètrics complexes. / This thesis proposes an improvement of the classical finite element method (FEM) for an efficient treatment of curved boundaries: the NURBSenhanced FEM (NEFEM). It is able to exactly represent the geometry by means of the usual CAD boundary representation with non-uniform rational Bsplines (NURBS), while the solution is approximated with a standard piecewise polynomial interpolation. Therefore, in the vast majority of the domain, interpolation and numerical integration are standard, preserving the classical finite element (FE) convergence properties, and allowing a seamless coupling with standard FEs on the domain interior. Specifically designed polynomial interpolation and numerical integration are designed only for those elements affected by the NURBS boundary representation.The implementation and application of NEFEM to problems demanding an accurate boundary representation are also primary goals of this thesis. For instance, the numerical solution of Maxwell's equations is highly sensitive to geometry description. The application of NEFEM to electromagnetic scattering problems using a discontinuous Galerkin formulation is presented. The ability of NEFEM to compute an accurate solution with coarse meshes and high-order approximations is investigated, and the possibilities of NEFEM meshes, with elements containing edge or corner singularities, are explored. With NEFEM, the mesh size is no longer subsidiary to geometry complexity, and depends only on the accuracy requirements on the solution, whereas standard FEs require mesh refinement to properly capture the geometry. This implies a drastic difference in mesh size that results in drastic memory savings, and also important savings in computational cost. Thus, NEFEM is a powerful tool for large-scale scattering simulations with complex geometries in three dimensions. Another key issue in the numerical solution of electromagnetic scattering problems is using a mechanism to perform the absorption of outgoing waves. Two perfectly matched layers are discussed, optimized and compared in a high-order discontinuous Galerkin framework.The numerical solution of Euler equations of gas dynamics is also very sensitive to geometry description. Using a discontinuous Galerkin formulation and linear isoparametric elements, a spurious entropy production may prevent convergence to the correct solution. With NEFEM, the exact imposition of the solid wall boundary condition provides accurate results even with a linear approximation of the solution. Furthermore, the exact boundary representation allows using coarse meshes, but ensuring the proper implementation of the solid wall boundary condition. An attractive feature of the proposed implementation is that the usual routines of a standard FE code can be directly used, namely routines for the computation of elemental matrices and vectors, assembly, etc. It is only necessary to implement new routines for the computation of numerical quadratures in curved elements and to store the value of shape functions at integration points. Several curved FE techniques have been proposed in the literature. In this thesis, NEFEM is compared with some popular curved FE techniques (namely isoparametric FEs, cartesian FEs and p-FEM), from three different perspectives: theoretical aspects, implementation and performance. In every example shown, NEFEM is at least one order of magnitude more accurate compared to other techniques. Moreover, for a desired accuracy NEFEM is also computationally more efficient. In some examples, NEFEM needs only 50% of the number of degrees of freedom required by isoparametric FEs or p-FEM. Thus, the use of NEFEM is strongly recommended in the presence of curved boundaries and/or when the boundary of the domain has complex geometric details.
|
8 |
Sobre a Geometria de Imersões RiemannianasSantos, Fábio Reis dos Santos 26 May 2015 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-23T11:16:42Z
No. of bitstreams: 1
arquivototal.pdf: 1343904 bytes, checksum: dfca90c2164204a1513fc4a55eca4527 (MD5) / Made available in DSpace on 2016-03-23T11:16:43Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1343904 bytes, checksum: dfca90c2164204a1513fc4a55eca4527 (MD5)
Previous issue date: 2015-05-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Our purpose is to study the geometry of Riemannian immersions in certain semi-
Riemannian manifolds. Initially, considering linearWeingarten hypersurfaces immersed
in locally symmetric manifolds and, imposing suitable constraints on the scalar curvature,
we guarantee that such a hypersurface is either totally umbilical or isometric to
a isoparametric hypersurface with two distinct principal curvatures, one of them being
simple. In higher codimension, we use a Simons type formula to obtain new characterizations
of hyperbolic cylinders through the study of submanifolds having parallel
normalized mean curvature vector field in a semi-Riemannian space form. Finally,
we investigate the rigidity of complete spacelike hypersurfaces immersed in the steady
state space via applications of some maximum principles. / Nos propomos estudar a geometria de imersões Riemannianas em certas variedades
semi-Riemannianas. Inicialmente, consideramos hipersuperfícies Weingarten
lineares imersas em variedades localmente simétricas e, impondo restrições apropriadas
à curvatura escalar, garantimos que uma tal hipersuperfície é totalmente umbílica
ou isométrica a uma hipersuperfície isoparamétrica com duas curvaturas principais distintas,
sendo uma destas simples. Em codimensão alta, usamos uma fórmula do tipo
Simons para obter novas caracterizações de cilindros hiperbólicos a partir do estudo de
subvariedades com vetor curvatura média normalizado paralelo em uma forma espacial
semi-Riemanniana. Finalmente, investigamos a rigidez de hipersuperfícies tipo-espaço
completas imersas no steady state space via aplicações de alguns princípios do máximo.
|
9 |
[en] THREE-DIMENSION BEAM ELEMENT FORMULATION INCLUDING BENDING-TORSION COUPLINGS AND CROSS-SECTION WARPING / [pt] MODELO DE VIGA TRIDIMENSIONAL COM ACOPLAMENTO FLEXO-TORSIONAL E EMPENAMENTO DA SEÇÃO RETAJORGE AURELIO SANTA CRUZ PASTOR 06 July 2015 (has links)
[pt] Apresenta-se a formulação de um modelo isoparamétrico para a análise de viga tridimensional por elementos finitos que inclui a cinemática de deformação axial, de flexão, de torção e do empenamento da seção reta. A geometria do elemento e o campo de deslocamentos são aproximados, na direção longitudinal, por funções cúbicas de interpolação definidas na linha central. O elemento possui três graus-de-liberdade de translação e um grau-de-liberdade de rotação em torno do eixo axial da viga que permitem representar as deformações lineares longitudinais e de cisalhamento devidas aos esforços axiais, de flexão e de torção na viga. Além destes um número de graus-de-liberdade generalizados é utilizado na representação do estado de deformações resultante do empenamento da seção reta. Condições de compatibilidade dos deslocamentos entre elementos contíguos ou entre um elemento e uma parede rígida são obtidas através de um procedimento de penalização na expressão da energia de deformação. A condensação estática dos graus-de-liberdade generalizados na matriz de rigidez do elemento permite reduzir o desenvolvimento a uma formulação com quatro graus-de-liberdade por nó. A formulação foi implementada e resultados numéricos são utilizados para ilustrar as características do elemento em representar análises típicas de engenharia com vigas. / [en] The formulation of a three-dimension isoparametric beam elemento model that includes kinematics of axial, bending, torsional and warping displacements is presented. The element geometry and displacement fields are approximated using cubic interpolation functions along the element lenght coordinate, on the beam center axis. The displacements are represented by three translation and one rotation degrees-of-freedom, that account for linear and shear strains, and a number of generalized degrees-of-freedom to represent strains in the beam due to cross-section warping. Continuity conditions between adjoining element and between an element and a rigid wall are achieved by using rotation compatibility conditions at the common node. These are obtained with a penalty procedure added to the element strain energy. Static condensation of the generalized degrees-of-freedom is performed in the element stiffness matrix such the formulation results into a four degree-of-freedom per node element. The formulation has been implemented and some sample analysis results are furnished to illustrate the element capabilities in handling typical engineering beam analyses.
|
10 |
Převod trojúhelníkových polygonálních 3D sítí na 3D spline plochy / 3D Triangles Polygonal Mesh Conversion on 3D Spline SurfacesJahn, Zdeněk Unknown Date (has links)
In computer graphics we can handle unstructured triangular 3D meshes which are not too usable for processing through their irregularity. In these situations it occurs need of conversion that 3D mesh to more suitable representation. Some kind of 3D spline surface can be proper alternative because it institutes regularity in the form of control points grid and that's why it is more suitable for next processing. During conversion, which is described in this thesis, quadrilateral 3D mesh is constructed at first. This mesh has regular structure but mainly the structure corresponds to structure of control points grid of resulting 3D spline surface. Created quadrilateral 3D mesh can be saved and consequently used in specific modeling applications for T-spline surface creation.
|
Page generated in 0.0608 seconds