• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 8
  • 7
  • 4
  • 4
  • 1
  • Tagged with
  • 76
  • 76
  • 20
  • 17
  • 14
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Mantle melting processes: evidences from ophiolites, large igneous provinces, and intraplate seamounts

Madrigal Quesada, Maria Del Pilar 14 June 2016 (has links)
Melting processes in the mantle have a key role in plate tectonics and in the most colossal phenomena in the Earth, like large igneous provinces, mantle plume upwellings, and the constant growth of the planet's tectonic plates. In this study we use the geochemical and petrological evidence preserved in ophiolites, large igneous provinces, and intraplate seamounts to understand causes, timing and implications of melting in these different tectonic environments. We studied melting at extensional environments, in mid-ocean ridges and back-arc basins, preserved in ophiolites. The Santa Elena Ophiolite in Costa Rica comprises a well-preserved fragment of the lithospheric mantle that formed along a paleo-spreading center. Petrological models of fractional crystallization suggest deep pressures of crystallization of >0.4 GPa for most of the samples, in good agreement with similar calculations from slow/ultra-slow spreading ridges and require a relatively hydrated (~0.5 wt% H2O) MORB-like source composition. Our findings suggest a complex interplay between oceanic basin and back-arc extension environments during the Santa Elena Ophiolite formation. Secondly, we analyzed large igneous provinces and their mechanisms of formation. As the surface expression of deep mantle processes, it is essential to understand the time frames and geodynamics that trigger these massive lava outpourings and their impact to life in the planet. We analyze the record and timing of preserved fragments of the Pacific Ocean Large Igneous Provinces to reconstruct the history of mantle plume upwellings and their relation with a deep-rooted source like the Pacific Large Low Shear Velocity Province during the Mid-Jurassic to Upper Cretaceous. Lastly, we explore the occurrence of low-volume seamounts unrelated to mantle plume upwellings and their geochemical modifications as they become recycled inside the mantle, to answer questions related to the nature and origin of upper mantle heterogeneities. We present evidence that an enriched mantle reservoir composed of recycled seamount materials can be formed in a shorter time period than ancient subducted oceanic crust, thought to be the forming agent of the HIMU mantle reservoir endmember. A "fast-forming" enriched reservoir could explain some of the enriched signatures commonly present in intraplate magmas not related with an active mantle plume upwelling. / Ph. D.
62

Carbon cycle changes during the end-Marjuman (Cambrian) extinction in the Southern Appalachians

Gerhardt, Angela Mae 16 May 2014 (has links)
The late Cambrian-early Ordovician transition contains several trilobite extinctions. The first of these extinctions (the end-Marjuman) is thought to coincide with the Steptoean Positive Carbon Isotope Excursion or SPICE, a large and rapid excursion in the marine carbon isotope record. This excursion, which is expressed in sedimentary successions globally, is thought to represent a large perturbation to the carbon cycle during this time. Additionally, a limited amount of carbon isotope data from the Deadwood Formation in the Black Hills of South Dakota suggests the possibility of a small negative ẟ¹³C excursion near the extinction and preceding the SPICE. Previous high-resolution biostratigraphy has identified an expanded record of extinction event within the Nolichucky Formation of the Southern Appalachians making it an excellent candidate for the study of the precise relationship between the extinction and changes in the carbon cycle. This investigation confirms the onset of the SPICE occurs at the extinction boundary however no negative ẟ¹³C excursion occurs at the extinction boundary. Further there is no systematic relationship between local facies changes and ẟ¹³C or the extinction interval across the basin, which suggests that global environmental changes were responsible for both the ẟ¹³C record and the extinction event. / Master of Science
63

Occurrence des pesticides et des contaminants émergents dans une nappe alluviale. Contraintes apportées par l’origine et le temps de résidence de l’eau. Cas de la nappe de la Vistrenque / Occurrence of pesticides and emerging contaminants in an alluvial aquifer. Linking to groundwater origin and residence time. Case study of the Vistrenque aquifer.

Sassine, Lara 01 December 2014 (has links)
Le but de ce travail est de tester une approche multi-traceurs permettant de caractériser l'origine (éléments majeurs, Sr, Br, 87Sr/86Sr, δ18O, δ2H) et les temps de résidence (3H/3He, CFC, SF6) des eaux, pour identifier l'origine et évaluer le devenir des contaminants dans une nappe alluviale superficielle et peu profonde, la nappe de la Vistrenque. Les molécules étudiées sont les triazines, le métolachlore, le diuron, la carbamazépine, le sulfaméthoxazole, le diclofénac et l'ibuprofène. L'aquifère étudié est alimenté par une recharge directe, occasionnant le lessivage des pesticides des sols, et une recharge latérale provenant de l'aquifère karstique adjacent entraînant une dilution des eaux de la nappe en triazines. Localement, une contribution des eaux de surface (cours d'eau locaux, eau importée du Rhône) à la recharge de la nappe est mise en évidence entraînant également une dilution des eaux de la nappe en triazines mais au contraire une contamination en COE, quoique, en faibles concentrations. Les âges apparents des eaux alluviales échantillonnées, déterminés principalement par le couple 3H/3He, varient entre 1.4 et 22 ans. Le couplage de l'âge des eaux à leurs teneurs en triazines montre une persistance de ces molécules dans le milieu souterrain, et une atténuation de leur signal d'entrée soulignant l'efficacité de leur interdiction en 2003. Finalement, les eaux de la nappe alluviale montrent des rapports de dégradation des triazines variant entre 0,3 pour les eaux influencées par les eaux de surface et 4,8 pour celles montrant des âges apparents de 22 ans, suggérant une augmentation de ce rapport avec le temps de transfert des pesticides dans le système. / The aim of this work is to test a multi-tracer approach allowing the characterization of groundwater origin and residence time in a shallow alluvial aquifer, the Vistrenque aquifer, in order to identify the origin and the fate of contaminants therein. The selected compounds for the study are triazines, metolachlor, diuron, carbamazepine, sulfamethoxazole, diclofenac, and ibuprofen. The studied aquifer is mainly fed by 1) a direct recharge inducing pesticides leaching from soil layers and unsaturated zone and 2) by a lateral recharge from the karst adjacent aquifer, which induces triazines dilution in the alluvial aquifer. A local contribution of surface water (local streams and imported Rhône River water) was evidenced in the alluvial groundwater inducing also triazines dilution but EOCs contamination nevertheless at low concentrations. The apparent age of the alluvial groundwater samples varies between 1.4 and 22 years. Linking groundwater age to triazines contents allowed to highlight, first, the persistence of these compounds in the alluvial groundwater and, second, the decreasing of their input signal in relatively recent groundwater samples in accordance with their forbidding in 2003. Finally, the Vistrenque alluvial groundwater showed triazines degradation ratios varying from 0.3 for groundwater influenced by surface water infiltration to 4.8 for groundwater characterized by relatively older apparent residence time on the order of 22 years. This suggests an increasing ratio with the transfer time of these compounds in the alluvial aquifer system.
64

Silicate weathering in the Himalayas : constraints from the Li isotopic composition of river systems

Bohlin, Madeleine Sassaya January 2018 (has links)
Chemical weathering of silicate rock consumes atmospheric CO2 and supplies the oceans with cations, thereby controlling both seawater chemistry and climate. The rate of CO2 consumption is closely linked to the rate of CO2 outgassing from the planetary interior, providing a negative feedback loop essential to maintaining an equable climate on Earth. Reconstruction of past global temperatures indicates that a pronounced episode of global cooling began ~50 million years ago, coincident with the collision of India and Asia, and the subsequent exhumation of the Himalayas and Tibet. This has drawn attention to the possible links between exhumation, erosion, changes in silicate weathering rates, and climate. However, many of the present-day weathering processes operating on the continents remain debated and poorly constrained, hampering our interpretations of marine geochemical archives and past climatic shifts. To constrain the controls on silicate weathering, this thesis investigates the lithium (Li) isotopic composition of river waters, suspended sediments and bed load sediments in the Alaknanda river basin, forming the headwaters of the Ganges. Due to the large fractionation of Li isotopes in the Earth’s surface environment, Li is sensitive to small changes in silicate weathering processes. As a consequence of the pronounced gradients in climate (rainfall and temperature) and erosion across the basin, the river waters show large variations in their Li isotopic composition (δ7Li), ranging from +7.4 to +35.4‰, covering much of the observed global variation. This allows a detailed investigation of the controls on Li isotope fractionation, and by extension silicate weathering. The Li isotopic composition is modelled using a one-dimensional reactive transport model. The model incorporates the continuous input of Li from rock dissolution, removal due to secondary mineral formation, and hydrology along subsurface flow paths. Modelling shows that the Li isotopic variations can be described by two dimensionless variables; (1) the Damköhler number, ND, which relates the silicate dissolution rate to the fluid transit time, and (2) the net partition coefficient of Li during weathering, kp, describing the partitioning of Li between secondary clay minerals and water, which is primarily controlled by the stoichiometry of the weathering reactions. The derived values of the controlling parameters ND and kp, are investigated over a range of climatic conditions and on a seasonal basis, shedding light onto variations in the silicate weathering cycle. In a kinetically limited weathering regime such as the Himalayan Mountains, both climate and erosion exert critical controls the weathering intensity (the fraction of eroded rock which is dissolved) and the weathering progression (which minerals that are being weathered), and consequently the fractionation of Li isotopes and silicate weathering in general. Modelling of the Li isotopic composition provides an independent estimate of the parameters which control silicate weathering. These estimates are then used to constrain variables such as subsurface fluid flux, silicate dissolution rates, fluid transit times and the fraction of rock which is weathered to form secondary clay minerals. The simple one-dimensional reactive transport model therefore provides a powerful tool to investigate the minimum controls on silicate weathering on the continents.
65

Evaluation of 87Sr/86Sr, δ18O, δ2H, and Cation Contents as Geochemical Tracers for Provenance and Flow Paths of Saline Solutions in German Zechstein Deposits / Evaluierung von 87Sr/86Sr, δ18O, δ2H, sowie Kationengehalten als Geochemische Tracer für Herkunft und Fliesswege von Salinaren Lösungen in Deutschen Zechsteinablagerungen

Klaus, Janina Simone 03 November 2008 (has links)
No description available.
66

Successeurs des dinosaures ? Paléobiologie et paléoécologie d’un oiseau géant terrestre du Paléogène / -

Angst, Delphine 17 November 2014 (has links)
Les Gastornithidae sont des oiseaux géants terrestres présents dans le Tertiaire (Paléocène- Eocène) d'Europe, d'Amérique du Nord et d'Asie. Bien que ces oiseaux soient connus depuis le 19ème siècle, leur écologie et les environnements dans lesquels ils vivaient sont encore très mal connus. Cette thèse propose donc d'apporter des réponses sur ces deux points afin de mieux comprendre ces oiseaux grâce à une approche pluridisciplinaire, combinant des études de morphologie-fonctionnelle, de géochimie isotopique, et de paléontologie. Nous avons pu déterminer que cet oiseau de deux mètres de haut devait peser entre 110 et 260 kg, et avait un déplacement relativement lent ne lui permettant pas de courir rapidement et longtemps. Le régime alimentaire des Gastornithidae, en débat depuis plus de vingt ans, a été ré-étudié grâce à une étude de géochimie isotopique combinée à une étude de morphologie fonctionnelle, permettant de conclure à une alimentation herbivore. Parallèlement, les paléo-environnements dans lesquels évoluaient cet oiseau ont également pu être étudiés grâce une étude de géochimie isotopique appliquée à des coquilles d'oeufs fossiles du Sud de la France attribuées à Gastornis dans cette thèse. Ces grands oiseaux vivaient donc dans un environnement relativement sec et chaud avec probablement une alternance de saison sèche et humide pour le Sud de la France, ce qui est différent de ce qu'on connait pour des environnements du centre de l'Allemagne où d'autres fossiles de Gastornis ont été trouvés, et où la végétation montre un environnement plus humide. Cela montre donc que cet oiseau avait une bonne capacité d'adaptation à différents environnements, ce qui lui a probablement permis de franchir le PETM sans être particulièrement affecté, comme le montre le registre fossile dans lequel aucune extinction, aucune variation géographique ou anatomique ne sont observées dans cette famille contrairement au cas de nombreux mammifères / Gastornithidae are a familly of large ground fossils birds present in the Tertiary (Paleocene- Eocene) from Europe, North America and Asia. Although these birds are known since the beginning of the 19th century, their ecology and the environment where they lived are still poorly known. Therefore, this PhD propose to bring some answers about this two points in order to better understand these birds using a multidisciplinary approach, including functional morphology, isotope geochemistry and paleontological studies. We have determined that this two meter high bird should weigh around 110 to 260 kg, and had a relatively slow locomotion not allowing him to run quickly and for a long time. The diet of the Gastornithidae, discussed since more twenty years, has been studied using an isotopic geochemical approach combine with a morphofunctional study, which permits to conclude to an herbivore diet. In parallel, paleo-environments where lived this bird have also been studied using isotopical analysis applied on fossils bird’s eggshells from the southern France, attributed to Gastornis in this thesis. Thus these large birds lived in an environment relatively dry and hot, with probably an alternance of dry and wet saison in the southern France, which is different than which is known in middle Germany environments where other Gastornis fossils were found, and where vegetation shows an environment wetter. Therefore, that shows that this bird had a good adaptability to different environments, which allowed him to cross the PETM without being particularly affected as shown in the fossil record, on the contrary to numerous mammals
67

Dating the Cenozoic incision history of the Tennessee and Shenandoah Rivers with cosmogenic nuclides and 40Ar/39Ar in manganese oxides

William E Odom III (9673769) 15 December 2020 (has links)
The post-orogenic history of the Appalachian Mountains, particularly the persistence of rough topography and the degree of river incision throughout the region, has been a longstanding focus of geomorphology studies. Numerous models have been developed to explain the evolution of this landscape, variously invoking episodic or continuous processes of uplift and erosion to drive the generation or reduction of topographic relief. Recently, late Cenozoic uplift has found favor as a mechanism for rejuvenating the topography of the southern and central Appalachians. This hypothesis has drawn on longitudinal river profiles, seismic tomography, and offshore sediment records as evidence of Neogene uplift.<div><br></div><div>Radiometric dating of surficial deposits provides a means to directly test models of episodic and continuous landscape evolution, as well as the Neogene uplift hypothesis. The research described in this thesis dates surficial sediments (river terraces, alluvial fans, and a filled sinkhole) and supergene manganese oxides using 26Al/10Be burial dating and 40Ar/39Ar geochronology, respectively. Our cosmogenic 26Al/10Be dating provides detailed histories of aggradation and incision along the Shenandoah and Tennessee Rivers since the early Pliocene. 40Ar/39Ar dating of manganese oxides permits estimates of surface preservation and denudation in the Shenandoah Valley and nearby watersheds throughout the Cenozoic.<br></div><div><br></div><div>The results of our work in the Shenandoah Valley, Tennessee River basin, and intervening areas indicate that the Appalachians experienced no significant pulse of uplift during the Cenozoic. Long-term preservation of supergene manganese oxides dates as far back as the Eocene, demonstrating minimal denudation and discontinuous formation that lend evidence to episodic landscape evolution models. Cosmogenic26Al/10Be burial ages along the Shenandoah and Tennessee Rivers reveal Pliocene aggradation, with enhanced deposition in the Shenandoah Valley during the mid-Piacenzian Warm Period. Both rivers likely experienced incision during the Pleistocene, likely due to climatic fluctuations. These results demonstrate that while the Appalachian landscape has remained largely unchanged for tens of millions of years, rapid Pleistocene changes in base level recently triggered significant incision of major drainages.<br></div>
68

STABLE NITROGEN AND SULFUR ISOTOPES IN ATMOSPHERIC CHEMISTRY

Jianghanyang Li (10702320) 27 April 2021 (has links)
<p>SO<sub>2</sub> and NO<sub>x</sub> (NO+NO<sub>2</sub>) are important trace gases in the atmosphere as they adversely affect air quality and are precursors to sulfate and nitrate aerosols in the atmosphere. However, there are significant uncertainties in the emission inventories and the atmospheric chemistry processes of both gases. Addressing these uncertainties will help us to 1) better regulate their emissions from anthropogenic activities, 2) understand the formation mechanism of aerosol pollution events, during which rapid accumulation of nitrate and sulfate aerosols are commonly observed, and 3) better constrain the impact of SO<sub>2</sub>, NO<sub>x</sub>, sulfate aerosols and nitrate aerosols to the global radiation balance. Stable isotopes of nitrogen and sulfur are useful tools in understanding both the origins and chemistry of SO<sub>2</sub> and NO<sub>x</sub> since different emission sources usually display distinct sulfur and nitrogen isotopic compositions, and different SO<sub>2</sub> and NO<sub>x</sub>oxidation pathways fractionate sulfur and nitrogen isotopes differently. In this dissertation, five studies are conducted to 1) use sulfur isotopes to investigate the sources and chemistry of atmospheric sulfur, and 2) improve our understanding of the isotopic fractionation processes associated with the atmospheric chemistry of reactive nitrogen. </p><p>Using stable sulfur isotopes, we first analyzed the sources of sulfate aerosols collected at Baring Head, New Zealand and atmospheric deposition at the Atacama Desert. At Baring Head, we found that the secondary sulfate, i.e., sulfate formed from atmospheric oxidation of SO<sub>2</sub>, is mainly observed in fine aerosols (<1 µm) while the sulfate in coarse aerosols (>1 µm) is mostly sea salt sulfate. 73-77% of the secondary sulfate is sourced from biogenic emissions by ocean phytoplankton, and the rest is originated from anthropogenic activities. The sulfate deposition across the Atacama Desert, on the other hand, is a mixture of sea salt sulfate (only near the coast), anthropogenic SO<sub>2</sub> emissions, local soil, and lake salts. Then, sulfur isotopes were used to investigate the formation chemistry of sulfate aerosols collected during a strong winter haze episode in Nanjing, China, where the sources of SO<sub>2</sub> were well-understood. We found that, although the sources of sulfur remain unchanged during the haze episode, the sulfur isotopic compositions of sulfate vary significantly, suggesting isotopic fractionation occurred during the formation of sulfate aerosols. We interpreted the variation using a Rayleigh distillation model to evaluate the contribution of sulfate formation pathways. The model suggested that the Transition Metal Ion catalyzed O<sub>2</sub> oxidation pathway contributed 49±10% of the total sulfate production, while the O<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> oxidations accounted for the rest. </p><p>Next, we conducted experiments in an atmospheric simulation chamber to determine the isotopic fractionations between NO and NO<sub>2</sub>. This isotopic fractionation is controlled by a combination of two factors: 1) the equilibrium isotopic exchange between NO and NO<sub>2</sub> molecules, and 2) the kinetic isotope effects of the NO<sub>x</sub> photochemical cycle, namely the Leighton Cycle Isotope Effect (LCIE). Our experiments showed that the fractionation factor during the isotopic exchange is 1.0289±0.0019, and the fractionation factor of LCIE is 0.990±0.005. A model was constructed to assess the relative importance of the two factors, showing the isotopic exchange should be the dominant factor when NO<sub>x</sub> >20 ppb, while LCIE should be more important at low NO<sub>x</sub> concentrations (<1 ppb) and high rates of NO<sub>2</sub>photolysis. Last, we quantified the overall nitrogen isotopic fractionation during the formation of nitrate aerosols collected at Baring Head, New Zealand. Our results showed that significant and variable (0-15‰) isotopic fractionations occurred during the formation of nitrate aerosols. The isotopic fractionation factors are lower in the summer and higher in the winter, which is mainly caused by seasonal variations in nitrate formation pathways. </p><p>Overall, this dissertation first applied stable sulfur isotopes in aerosol samples collected in different environments, demonstrating that isotopes are excellent tools in identifying the origins and chemistry of atmospheric sulfur. Then, we investigated the isotopic fractionation processes during the atmospheric nitrogen chemistry, which can be useful for future studies aimed at understanding the origins and chemistry of atmospheric nitrogen using stable nitrogen isotopes.</p>
69

The Geochemical and Spatial Argument for Microbial Life Surviving into Early Diagenesis in the Appalachian Basin

Buchwalter, Edwin R January 2016 (has links)
No description available.
70

Middle-Hauterivian to Lower-Campanian sequence stratigraphy and stable isotope geochemistry of the Comanche platform, south Texas

Phelps, Ryan Matthew, 1982- 11 July 2012 (has links)
Carbonate platforms contain a wealth of information regarding the changing biota, sea level, ocean-chemistry, and climate of the Cretaceous Period. The Comanche platform of the northern Gulf of Mexico represents a vast, long-lived carbonate system that extended from west Texas through the Florida panhandle. In central and south Texas, excellent outcrops and an extensive suite of subsurface data provide an opportunity to document the evolution of this system, from the shoreline to the shelf-margin and slope. This study examines the changing facies, platform morphologies, and shelf-margin architectures of the mixed carbonate-siliciclastic, middle-Hauterivian to lower-Campanian interval. Stratigraphic results are integrated with stable-isotope geochemistry to document the detrimental effects of oceanic anoxic events on the carbonate platform. Seven second-order, transgressive-regressive supersequences of 3-14 Myr duration are defined in south Texas using sequence stratigraphic analysis of shelf-interior facies successions. Second-order supersequences are subdivided into several third-order depositional sequences of 1-3 Myr duration. In these sequences, facies proportions and stratal geometries of the shelf-interior are found to be the result of changing platform morphology and temporal evolution from distally-steepened ramp to rimmed-shelf depositional profiles. Shelf-margin trajectories, stratigraphic architectures, and facies proportions are a function of long-term accommodation trends expressed in second-order supersequences. These characteristics are modified by lateral variability in the underlying structural/tectonic setting and localized syndepositional faulting. The stratigraphic equivalents of oceanic anoxic events 1a, 1b, 1d, 2, and 3 are documented in the Cretaceous section of south Texas. These oceanic anoxic events coincided with maximum flooding zones of supersequences and are linked to carbonate platform drowning events on four separate occasions. The occurrence of oceanic anoxic events is found to be a fundamental driver of carbonate platform morphology, faunal composition, and facies evolution in transgressive-regressive supersequences of the northern Gulf of Mexico. / text

Page generated in 0.0756 seconds