Spelling suggestions: "subject:"jacobians"" "subject:"jacobianas""
11 |
Toeplitz Jacobian matrix and nonlinear dynamical systems葛彤, Ge, Tong. January 1996 (has links)
published_or_final_version / Civil and Structural Engineering / Doctoral / Doctor of Philosophy
|
12 |
Explicit endomorphisms and correspondencesSmith, Benjamin Andrew January 2006 (has links)
Doctor of Philosophy (PhD) / In this work, we investigate methods for computing explicitly with homomorphisms (and particularly endomorphisms) of Jacobian varieties of algebraic curves. Our principal tool is the theory of correspondences, in which homomorphisms of Jacobians are represented by divisors on products of curves. We give families of hyperelliptic curves of genus three, five, six, seven, ten and fifteen whose Jacobians have explicit isogenies (given in terms of correspondences) to other hyperelliptic Jacobians. We describe several families of hyperelliptic curves whose Jacobians have complex or real multiplication; we use correspondences to make the complex and real multiplication explicit, in the form of efficiently computable maps on ideal class representatives. These explicit endomorphisms may be used for efficient integer multiplication on hyperelliptic Jacobians, extending Gallant--Lambert--Vanstone fast multiplication techniques from elliptic curves to higher dimensional Jacobians. We then describe Richelot isogenies for curves of genus two; in contrast to classical treatments of these isogenies, we consider all the Richelot isogenies from a given Jacobian simultaneously. The inter-relationship of Richelot isogenies may be used to deduce information about the endomorphism ring structure of Jacobian surfaces; we conclude with a brief exploration of these techniques.
|
13 |
Creating a Data Acquisition Platform for Robot Skill TrainingNahari, Ammar Jamal 01 February 2019 (has links)
No description available.
|
14 |
An augmented Jacobian matrix algorithm for tracking homotopy zero curvesBillups, Stephen C. January 1985 (has links)
There are algorithms for finding zeros or fixed points of nonlinear systems of (algebraic) equations that are globally convergent for almost all starting points, i.e., with probability one. The essence of all such algorithms is the construction of an appropriate homotopy map and then tracking some smooth curve in the zero set of this homotopy map. The augmented Jacobian matrix algorithm is part of the software package HOMPACK, and is based on an algorithm developed by W.C. Rheinboldt. The algorithm exists in two forms-one for dense Jacobian matrices, and the other for sparse Jacobian matrices. / M.S.
|
15 |
DSJM : a software toolkit for direct determination of sparse Jacobian matricesHasan, Mahmudul January 2011 (has links)
DSJM is a software toolkit written in portable C++ that enables direct determination of
sparse Jacobian matrices whose sparsity pattern is a priori known. Using the seed matrix
S 2 Rn×p, the Jacobian A 2 Rm×n can be determined by solving AS = B, where B 2 Rm×p
has been obtained via finite difference approximation or forward automatic differentiation.
Seed matrix S is defined by the nonzero unknowns in A. DSJM includes well-known as
well as new column ordering heuristics. Numerical testing is highly promising both in
terms of running time and the number of matrix-vector products needed to determine A. / x, 71 leaves : ill. ; 29 cm
|
16 |
Generalizations of two-dimensional conformal field theory : some results on jacobians and intersection numbers /Zhao, Wenhua. January 2000 (has links)
Thesis (Ph. D.)--University of Chicago, Department of Mathematics, June 2000. / Includes bibliographical references. Also available on the Internet.
|
17 |
Endomorphism rings of hyperelliptic JacobiansKriel, Marelize 03 1900 (has links)
Thesis (MSc (Mathematics))--University of Stellenbosch, 2005. / The aim of this thesis is to study the unital subrings contained in associative algebras arising
as the endomorphism algebras of hyperelliptic Jacobians over finite fields.
In the first part we study associative algebras with special emphasis on maximal orders. In
the second part we introduce the theory of abelian varieties over finite fields and study the
ideal structures of their endomorphism rings.
Finally we specialize to hyperelliptic Jacobians and study their endomorphism rings.
|
18 |
Effect Of Jacobian Evaluation On Direct Solutions Of The Euler EquationsOnur, Omer 01 December 2003 (has links) (PDF)
A direct method is developed for solving the 2-D planar/axisymmetric Euler equations. The Euler equations are discretized using a finite-volume method with upwind flux splitting schemes, and the resulting nonlinear system of equations are solved using Newton& / #8217 / s Method. Both analytical and numerical methods are used for Jacobian calculations. Numerical method has the advantage of keeping the Jacobian consistent with the numerical flux vector without extremely complex or impractical analytical differentiations. However, numerical method may have accuracy problem and may need longer execution time.
In order to improve the accuracy of numerical method detailed error analyses were performed. It was demonstrated that the finite-difference perturbation magnitude and computer precision are the most important parameters that affect the accuracy of numerical Jacobians. A relation was developed for optimum perturbation magnitude that can minimize the error in numerical Jacobians. Results show that very accurate numerical Jacobians can be calculated with optimum perturbation magnitude.
The effects of the accuracy of numerical Jacobians on the convergence of flow solver are also investigated. In order to reduce the execution time for numerical Jacobian evaluation, flux vectors with perturbed flow variables are calculated for only related cells. A sparse matrix solver based on LU factorization is used for the solution, and to improve the Jacobian matrix solution some strategies are considered. Effects of different flux splitting methods, higher-order discretizations and several parameters on the performance of the solver are analyzed.
|
19 |
Algorithmic aspects of hyperelliptic curves and their jacobiansIvey law, Hamish 14 December 2012 (has links)
Ce travail se divise en deux parties. Dans la première partie, nous généralisons le travail de Khuri-Makdisi qui décrit des algorithmes pour l'arithmétique des diviseurs sur une courbe sur un corps. Nous montrons que les analogues naturelles de ses résultats se vérifient pour les diviseurs de Cartier relatifs effectifs sur un schéma projectif, lisse et de dimension relative un sur un schéma affine noetherien quelconque, et que les analogues naturelles de ses algorithmes se vérifient pour une certaine classe d'anneaux de base. Nous présentons un formalisme pour tels anneaux qui sont caractérisés par l'existence d'un certain sous-ensemble des opérations standards de l'algèbre linéaire pour les modules projectifs sur ces anneaux.Dans la deuxième partie de ce travail, nous considérons un type de problème de Riemann-Roch pour les diviseurs sur certaines surfaces algébriques. Plus précisément, nous analysons les surfaces algébriques qui émanent d'un produit ou d'un produit symétrique d'une courbe hyperelliptique de genre supérieur à un sur un corps (presque) arbitraire. Les résultats principaux sont une décomposition des espaces de sections globales de certains diviseurs sur telles surfaces et des formules explicites qui décrivent les dimensions des espaces de sections de ces diviseurs. Dans le dernier chapitre, nous présentons un algorithme qui produit une base pour l'espace de sections globales d'un tel diviseur. / The contribution of this thesis is divided naturally into two parts. In Part I we generalise the work of Khuri-Makdisi (2004) on algorithms for divisor arithmetic on curves over fields to more general bases. We prove that the natural analogues of the results of Khuri-Makdisi continue to hold for relative effective Cartier divisors on projective schemes which are smooth of relative dimension one over an arbitrary affine Noetherian base scheme and that natural analogues of the algorithms remain valid in this context for a certain class of base rings. We introduce a formalism for such rings,which are characterised by the existence of a certain subset of the usual linear algebra operations for projective modules over these rings.Part II of this thesis is concerned with a type of Riemann-Roch problem for divisors on certain algebraic surfaces. Specifically we consider algebraic surfaces arising as the square or the symmetric square of a hyperelliptic curve of genus at least two over an (almost) arbitrary field. The main results are a decomposition of the spaces of global sections of certain divisors on such surfaces and explicit formulæ for the dimensions of the spaces of sections of these divisors. In the final chapter we present an algorithm which generates a basis for the space of global sections of such a divisor.
|
20 |
Sur le nombre de points rationels des variétés abéliennes sur les corps finisHaloui, Safia-Christine 14 June 2011 (has links)
Le polynôme caractéristique d'une variété abélienne sur un corps fini est défini comme étant celui de son endomorphisme de Frobenius. La première partie de cette thèse est consacrée à l'étude des polynômes caractéristiques de variétés abéliennes de petite dimension. Nous décrivons l'ensemble des polynômes intervenant en dimension 3 et 4, le problème analogue pour les courbes elliptiques et surfaces abéliennes ayant été résolu par Deuring, Waterhouse et Rück.Dans la deuxième partie, nous établissons des bornes supérieures et inférieures sur le nombre de points rationnels des variétés abéliennes sur les corps finis. Nous donnons ensuite des bornes inférieures spécifiques aux variétés jacobiennes. Nous déterminons aussi des formules exactes pour les nombres maximum et minimum de points rationnels sur les surfaces jacobiennes. / The characteristic polynomial of an abelian variety over a finite field is defined to be the characteristic polynomial of its Frobenius endomorphism. The first part of this thesis is devoted to the study of the characteristic polynomials of abelian varieties of small dimension. We describe the set of polynomials which occur in dimension 3 and 4; the analogous problem for elliptic curves and abelian surfaces has been solved by Deuring, Waterhouse and Rück.In the second part, we give upper and lower bounds on the number of points on abelian varieties over finite fields. Next, we give lower bounds specific to Jacobian varieties. We also determine exact formulas for the maximum and minimum number of points on Jacobian surfaces.
|
Page generated in 0.0232 seconds