Spelling suggestions: "subject:"tet impingement"" "subject:"beet impingement""
21 |
CFD Evaluation of Mixing Processes for High-Level Nuclear Waste TanksEdrei, Maximiliano 17 November 2017 (has links)
Computational Fluid Dynamics (CFD) has been applied to investigate two aspects of a mixing process for high level nuclear waste tanks. Through CFD the applicability of Poreh’s correlations that are currently used to describe the radial wall jets in the Pulse Jet Mixing (PJM) process were assessed. In addition, simulations were conducted in order to investigate mean hydrodynamic characteristics of sparged non-Newtonian fluids for the use in the PJM process.
Three single phase turbulent simulations using the commercial package STAR-CCM+ were successively conducted. A model validated with experimental data was developed and successively altered to see effects of low characteristic ratio and a curved impingement surface. Results suggested that Poreh’s correlations are applicable under PJM conditions and geometry.
Lastly, multi-phase Eulerian-Eulerian Simulations were conducted using the commercial software package ANSYS Fluent. Altering the characteristic ratio (h/D) of a sparged non-Newtonian fluid system resulted in a trend of flattening air volume fraction and air axial velocity profiles with decreasing characteristic ratio.
|
22 |
Inversion Characteristics of a Buoyant Cylindrical Puck During Oblique Water ImpactSmith, Zachary Crawford 01 February 2016 (has links)
The Apollo Command Module had a tendency to flip over upon impact with the ocean surface after returning from space (9/19 times). In an effort to better characterize the inversion process for future water landing vehicles, experimental results for a simplified buoyant cylindrical puck impacting the water surface are presented. This study focuses on the dependence of inversion upon vertical velocity, horizontal velocity, and the pitch angle of the puck relative to the free surface. High-speed images reveal an asymmetric cavity that forms upon water impact. The asymmetric cavity then collapses, applying a moment, which can be sufficient to invert the puck after impact. Increasing the vertical velocity increases the likelihood of inversion. The puck never flipped over below a vertical velocity of 3.75 m/s. Increasing the horizontal velocity also slightly increases the likelihood of inversion. However, the largest effect of increasing horizontal velocity is to shift the range of impact angles for which the puck will invert to lower angles. The buoyant cylindrical puck used in this study requires a higher Froude number (4.34) to invert than previous geometries which have been studied.
|
23 |
Thermal enhancement strategies for fluid jets impinging on a heated surfaceKing, Andrew James Campbell January 2007 (has links)
This research investigation examines the thermal behaviour of single and arrays of fluid jets impinging at heated surfaces, and formulates enhancement schemes for the jet impingement heat transfer processes for high-intensity cooling applications. The proposed techniques are numerically modelled and analysed over a wide parametric range to identify flow characteristics leading to thermal enhancement and optimum performance. The first scheme applies to a single fluid jet and incorporates a protruding object at the impingement surface to improve heat transfer. In this, a conical protrusion of high thermal conductivity is attached to the heated surface directly beneath the jet. Three different aspect ratios of 0.5, 1 and 2 are investigated for the protrusion while the inclusion of a fillet at the base of the cone is also studied. Jet Reynolds numbers between 100 and 30,000 are modelled. The observed thermal performance is compared with a reference case having no surface attachment. With this arrangement, the heat transfer rate typically varies between 10 and 40 percent above the reference case although depending on certain parametric combinations, the heat transfer may increase above or decrease below the reference performance. The highest indicated increase in heat transfer is about 90 percent while 15 percent below is the lowest. Careful selection of cone surface profile creates potential for further thermal enhancement. / The second scheme applies to a single fluid jet and incorporates a recess in the impingement surface to improve heat transfer. In this, a cylindrical cavity is introduced to the surface beneath the jet into which the fluid jet impinges. The effects of the cavity on heat transfer are examined for a number of different cavity diameters, cavity depths and jet discharge heights wherein a surface without a cavity is taken as the reference surface. Cavity diameters of 2, 3 and 4 times the jet diameter are investigated at cavity depths between zero and 4 times the jet diameter. Jet discharge heights range between 2 jet diameters above the reference surface to 2 jet diameters below the reference surface. The jet Reynolds number is varied between 100 and 30,000. With this enhancement technique, increases in heat transfer rates of up to 45 percent are observed when compared to the reference performance. The thermal performance of fluid jet arrays is examined by altering square or hexagonal array configurations to identify flow characteristics leading to optimal heat transfer rates. For this, the jet to jet spacing is varied between 1.5 and 7 times the jet diameter while the jet to surface height is varied between 2 and 6 times the jet diameter. Jet Reynolds numbers between 100 and 30,000 are investigated. For each configuration, a critical jet-to-jet spacing is identified below which the heat transfer is observed to reduce significantly. Correlations for the expected heat transfer for a square or hexagonal array are presented in terms of the jet to jet spacing, jet height and jet Reynolds number.
|
24 |
Numerical study of surface heat transfer enhancement in an impinging solar receiverLi, Lifeng January 2014 (has links)
During the impinging heat transfer, a jet of working fluid, either gas or liquid, will besprayed onto the heat transfer surface. Due to the high turbulence of the fluid, the heat transfer coefficient between the wall and the fluid will be largely enhanced. Previously, an impinging type solar receiver with a cylindrical cavity absorber was designed for solar dish system. However, non-uniform temperature distribution in the circumferential direction was found on absorber surface from the numerical model, which will greatly limit receiver's working temperature and finally affect receiver's efficiency. One of the possible alternatives to solve the problem is through modifying the roughness of the target wall surface. This thesis work aims to evaluate the possibility and is focusing on the study of heat transfer characteristics. The simulation results will be used for future experimental impinging solar receiver optimization work. Computational Fluid Dynamics (CFD) is used to model the conjugate heat transfer phenomenon of atypical air impinging system. The simulation is divided into two parts. The first simulation was conducted with one rib arranged on the target surface where heat transfer coefficient is relatively low to demonstrate the effects of rib shape (triangular,rectangular, and semi-circular) and rib height (2.5mm, 1.5mm, and 0.5mm). The circular rib with 1.5mm height is proved to be most effective among all to acquirerelatively uniform temperature distribution. In the second part, the amount of ribs is taken into consideration in order to reach more uniform surface heat flux. The target wall thickness is also varied to assess its influence.
|
25 |
Transferts de chaleur et de masse par impact de jets : application au refroidissement de machines électriquesBalligand, Maxime 03 April 2017 (has links)
Ces travaux s'inscrivent dans le cadre du projet ESSENCYELE, projet visant à développer un nouveau modèle de véhicule hybride. L'étude thermique présentée porte sur le refroidissement de machines électriques par jets impactant. Afin d'optimiser le refroidissement des bobinages de la partie fixe de la machine (stator), des travaux ont été menés dans le but d'étudier localement les échanges de chaleur lors de l'impact d'un jet. Deux fluides ont été considérés, l'air et l'huile. Le dispositif expérimental, associé à un programme de post-traitement par méthode inverse, permet de relever la température à la surface d'un cylindre lisse lors de l'impact d'un jet. L'influence de la distance jet/surface, de la géométrie de l'injecteur ou encore des propriétés du fluide ont été testées. Des travaux numériques ont permis de donner des informations supplémentaires sur l'évolution de l'écoulement au sein des injecteurs. Pour terminer, les configurations les plus intéressantes obtenues pour l'air et pour l'huile ont été testées sur le refroidissement des bobinages de stator. / The present work is a part of an industrial project named ESSENCYELE. The main objective of this project is to develop a new hybrid vehicle. The present study is about the electrical machine cooling system by impinging jets. To improve the end winding cooling, experiments has been made to study the local heat transfers during a jet impingement. Two fluids were considered, air and oil. The experimental device, with an inverse method post-processing program, allowed to estimate the temperature at the surface of a smooth cylinder. The influence of the jet/surface distance, the nozzle geometry or the fluid properties were tested. Numerical studies have provided additional information on the fluid flow evolution inside the nozzle. Finally, the most interesting configuration obtained with air jet and oil jet were tested.
|
26 |
Numerical Study on the Thermal Performance of a Novel Impinging Type Solar Receiver for Solar Dish-Brayton SystemXu, Haoxin January 2013 (has links)
An impinging type solar receiver has been designed for potential applications in a future Brayton Solar Dish System. The EuroDish system is employed as the collector, and an externally fired micro gas turbine (EFMGT) has been chosen as the power conversion unit. In order to reduce the risks caused by the quartz glass window, which is widely used in traditional air receiver designs, a cylinder cavity absorber without a quartz window has been adopted. Additionally, an impinging design has been chosen as the heat exchange system due to its high heat transfer coefficient compared to other single-phase heat exchange mechanisms. This thesis work introduces the design of an solar air receiver without a glass window, which features jet impingement to maximize the heat transfer rate. A detailed study of the thermal performance of the designed solar receiver has been conducted using numerical tools from the ANSYS FLUENT package. Concerning receiver performance, an overall thermal efficiency of 72.9% is attained and an output air temperature of 1100 K can be achieved, according to the numerical results. The total thermal power output is 38.05 kW, enough to satisfy the input requirements of the targeted micro gas turbine. A preliminary design layout is presented and potential optimization approaches for future enhancement of the receiver are proposed, regarding local thermal stress and pressure loss reduction. This thesis project also introduces a ray-thermal coupled numerical design method, which combines ray tracing techniques (using FRED®), with thermal performance analysis (using ANSYS Workbench).
|
27 |
Liquid Film Formation and Heat Transfer Characteristics of a Liquid Jet Obliquely Impinging onto a Wall / 壁面に斜め衝突する液体噴流の液膜形成および伝熱特性Sako, Noritaka 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(エネルギー科学) / 甲第24715号 / エネ博第458号 / 新制||エネ||86(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー変換科学専攻 / (主査)教授 川那辺 洋, 教授 林 潤, 教授 藤本 仁 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
|
28 |
The Influence of Superhydrophobicity on Laminar Jet Impingement and Turbulent Flow in a Channel with Walls Exhibiting RibletsPrince, Joseph Fletcher 28 August 2013 (has links) (PDF)
The object of this work is to explore the influence superhydrophobic (SH) surfaces exert in laminar jet impingement and when they are combined with riblets in turbulent channel flow. A SH surface generates an apparent slip due to the combination of micropatterning and chemical hydrophobicity. Because of surface tension, water does not enter the cavities between the features, increasing the contact angle of a water droplet on the surface and reducing the liquid-solid contact area. An analysis based on the integral momentum approach of Karman and Pohlhausen is presented that predicts jet impingement behavior on SH surfaces. The model is first applied to the scenario where the slip at the surface is isotropic and a downstream depth is imposed such that a circular hydraulic jump occurs. The model predicts the thin film parameters downstream of the jet and the radial location of the hydraulic jump. An increase in the hydraulic jump radius occurs as slip increases, momentum of the jet increases, or the downstream depth decreases. Modifications to the model are made for the scenario where the slip at the surface varies azimuthally, as would be the case for a surface patterned with microribs. The average behavior is similar, although now an elliptically shaped jump forms with the major axis aligned parallel to the rib/cavity structures. The ellipse eccentricity increases as the slip increases, the jet momentum increases, or the downstream depth decreases. Where there is no downstream depth imposed on SH surfaces, the thin film breaks up into droplets instead of forming a hydraulic jump. Further changes are made to the model to incorporate this behavior for isotropic and anisotropic surfaces resulting in circular and elliptically shaped breakups respectively. This work also explores SH surfaces with riblets in turbulent channel flow. Pressure drop measurements across surfaces exhibiting superhydrophobicity, riblets, and surfaces with both drag reducing mechanisms are presented. The SH surface reduces drag because the effective surface area is reduced and riblets are able to reduce drag by dampening the spanwise turbulence. Photolithography was used to fabricate all surface types. An aluminum channel with a control and a test section was used for testing. Pressure transducers recorded the pressure drop across smooth silicon wafers and patterned test surfaces simultaneously allowing for computation of the friction factors.
|
29 |
An Experimental Study of Porous Mediums on Heat Transfer Characteristics Subjected to Water Jet ImpingementBevan, William Arthur 14 December 2022 (has links)
No description available.
|
30 |
Confined Aerosol Jet in Fiber Classification and Dustiness MeasurementDubey, Prahit 08 September 2015 (has links)
No description available.
|
Page generated in 0.1126 seconds