Spelling suggestions: "subject:"jetson"" "subject:"metson""
1 |
Scenanalys av trafikmiljönAlsalehy, Ahmad, Alsayed, Ghada January 2021 (has links)
Antalet vägtrafikanter ökar varje år, och med det ökar trängseln. Man har därför gjort undersökningar med hjälp av objektdetektionsalgoritmer på videoströmmar. Genom att analysera data resultat är det möjligt att bygga en bättre infrastruktur, för att minska trafikstockning samt olyckor. Data som analyseras kan till exempel vara att räkna hur många trafikanter som vistas på en viss väg (Slottsbron i Halmstad) under en viss tid. Detta examensarbete undersöker teoretiskt hur en YOLO algoritm samt TensorFlow kan användas för att detektera olika trafikanter. Utvärderingsmetoder som användes i projektet för att få resultatet och dra slutsatser är mAP, träning och testning av egna och andras YOLO modeller samt övervakning av FPS- och temperatur-värden. För att möjliggöra detekteringen av trafikflöde i realtid nyttjades Jetson nano toolkit. Flera olika jämförelser har skapats för att avgöra vilken YOLO modell som är lämpligast. Resultaten från tester av olika YOLO modeller visar att YOLO-TensorFlows implementationer kan detektera trafikanter med en godtagbar noggrannhet. Slutsatsen är att Jetson nano har tillräckligt med processorkraft för att detektera olika trafikanter i realtid med hjälp av original YOLO implementation. Metoderna för att detektera trafikanter är standard och fungerande för analysering av trafikflöden.Testning av mer varierande trafikmiljö under längre tidsperioder krävs för att ytterligare verifiera om Jetson nanos lämplighet.
|
2 |
3D-Objekterkennung mit Jetson Nano und Integration mit KUKA KR6-Roboter für autonomes Pick-and-PlacePullela, Akhila, Wings, Elmar 27 January 2022 (has links)
Bildverarbeitungssysteme bieten innovative Lösungen für den Fertigungsprozess. Kameras und zugehörige
Bildverarbeitungssysteme können zur Identifizierung, Prüfung und Lokalisierung von Teilen
auf einem Förderband oder in einem Behälter mit Teilen eingesetzt werden. Roboter werden dann
eingesetzt,um jedes Teil aufzunehmen und im Montagebereich zu platzieren oder sogar um die Grundmontage
direkt durchzuführen. Das System für dieses Projekt besteht aus einem Roboter Kuka KR6 900,
der die Position (x-, y- und z-Koordinaten des Objektschwerpunkts) und die Ausrichtung eines Bauteils
von einem Bildverarbeitungssystem basierend auf einem Jetson Nano erhält. Das Ziel dieses Projekts
ist es, eine automatische Erkennung eines Objekts mit Hilfe einer 2D-Kamera und der Auswertung mit
dem Deep Learning Algorithmus Darknet YOLO V4 durchzuführen, so dass der Roboter das Objekt
greifen und platzieren kann. Dieses Projekt verwendet zwei verschiedene Objekttypen: einen Quader
und einen Zylinder. Die Bilderkennung erfolgt mit Hilfe des Jetson Nano, dort erfolgt aus den Pixelkoordinaten
die Berechnung der realen Koordinaten, die dann über die TCP/IP-Schnittstelle des Kuka
KR6 900 zur Durchführung der Entnahme und Platzierung übermittelt werden. Die Flexibilität des Roboters,
dessen Steuerung auf diese Weise von der Bildverarbeitung unterstützt wird, kann den Bedarf
an präzise konstruierten Teilezuführungen verringern und so die Flexibilität in der Fertigungszelle
erhöhen und kurze Produktionsläufe und Anpassungsfähigkeit ermöglichen.
|
3 |
Implementing and Comparing Static and Machine-Learning scheduling Approaches using DPDK on an Integrated CPU/GPUJohansson, Markus, Pap, Oscar January 2019 (has links)
As 5G is getting closer to being commercially available, base stations processing this traffic must be improved to be able to handle the increase in traffic and demand for lower latencies. By utilizing the hardware smarter, the processing of data can be accelerated in, for example, the forwarding plane where baseband and encryption are common tasks. With this in mind, systems with integrated GPUs becomes interesting for their additional processing power and lack of need for PCIe buses.This thesis aims to implement the DPDK framework on the Nvidia Jetson Xavier system and investigate if a scheduler based on the theoretical properties of each platform is better than a self-exploring machine learning scheduler based on packet latency and throughput, and how they stand against a simple round-robin scheduler. It will also examine if it is more beneficial to have a more flexible scheduler with more overhead than a more static scheduler with less overhead. The conclusion drawn from this is that there are a number of challenges for processing and scheduling on an integrated system. Effective batch aggregation during low traffic rates and how different processes affect each other became the main challenges.
|
4 |
Design and Implementation of Sensing Methods on One-Tenth Scale of an Autonomous Race CarVeeramachaneni, Harshitha 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Self-driving is simply the capacity of a vehicle to drive itself without human intervention. To accomplish this, the vehicle utilizes mechanical and electronic parts, sensors, actuators and an AI computer. The on-board PC runs advanced programming, which permits the vehicle to see and comprehend its current circumstance dependent on sensor input, limit itself in that climate and plan the ideal course from point A to point B. Independent driving is not an easy task, and to create self-sufficient driving arrangements is an exceptionally significant ability in the present programming designing field.
ROS is a robust and versatile communication middle ware (framework) tailored and widely used for robotics applications. This thesis work intends to show how ROS could be used to create independent driving programming by investigating self-governing driving issues, looking at existing arrangements and building up a model vehicle utilizing ROS.
The main focus of this thesis is to develop and implement a one-tenth scale of an autonomous RACECAR equipped with Jetson Nano board as the on-board computer, PCA9685 as PWM driver, sensors, and a ROS based software architecture.
Finally, by following the methods presented in this thesis, it is conceivable to build an autonomous RACECAR that runs on ROS.
By following the means portrayed in this theory of work, it is conceivable to build up a self-governing vehicle.
|
5 |
Astro – A Low-Cost, Low-Power Cluster for CPU-GPU Hybrid Computing Using the Jetson TK1Sheen, Sean Kai 01 June 2016 (has links) (PDF)
With the rising costs of large scale distributed systems many researchers have began looking at utilizing low power architectures for clusters. In this paper, we describe our Astro cluster, which consists of 46 NVIDIA Jetson TK1 nodes each equipped with an ARM Cortex A15 CPU, 192 core Kepler GPU, 2 GB of RAM, and 16 GB of flash storage. The cluster has a number of advantages when compared to conventional clusters including lower power usage, ambient cooling, shared memory between the CPU and GPU, and affordability. The cluster is built using commodity hardware and can be setup for relatively low costs while providing up to 190 single precision GFLOPS of computing power per node due to its combined GPU/CPU architecture. The cluster currently uses one 48-port Gigabit Ethernet switch and runs Linux for Tegra, a modified version of Ubuntu provided by NVIDIA as its operating system. Common file systems such as PVFS, Ceph, and NFS are supported by the cluster and benchmarks such as HPL, LAPACK, and LAMMPS are used to evaluate the system. At peak performance, the cluster is able to produce 328 GFLOPS of double precision and a peak of 810W using the LINPACK benchmark placing the cluster at 324th place on the Green500. Single precision benchmarks result in a peak performance of 6800 GFLOPs. The Astro cluster aims to be a proof-of-concept for future low power clusters that utilize a similar architecture. The cluster is installed with many of the same applications used by top supercomputers and is validated using the several standard supercomputing benchmarks. We show that with the rise of low-power CPUs and GPUs, and the need for lower server costs, this cluster provides insight into how ARM and CPU-GPU hybrid chips will perform in high-performance computing.
|
6 |
Development and Systems Integration of Small Hydrofoiling Robot for Mapping and Sensing / Utveckling och systemintegration av liten bärplansrobot för kartläggning och avkänningLopperi, Tommy, Söderberg, Henrik January 2022 (has links)
Unmanned surface vehicles (USVs) are vehicles of various levels of autonomy which can be made for a large variety of purposes, for instance ferriage and surveying. USV shave technically been around for about 80 years, however, it is only within fairly recent years developments in miniaturization of components and computers have allowed for the construction of USVs of a small size. The primary benefit of USVs is that they can perform otherwise costly and tedious tasks originally done by manned vehicles. They can also run on electric batteries; thus limiting the effect on the environment compared to the fossil fuels used in traditional vehicles. In this project, performed at the Swedish Maritime Robotics Center at KTH Stockholm, a small USV meant to perform depth measurements of waterways was developed. It can be steered via remote control and has the hardware required to navigate autonomously. This report goes through the multiple steps the project group undertook to develop the USV. The project included studying of previous works, selection and ordering of components, creating a schematic, developing the programming, and testing. 11 components were installed while several planned ones were not included due to time constraints. Testing of the remote control and GNSS logging was successful. / Obemannade ytfarkoster (engelska USV) är fordon med olika nivåer av autonomi som kan tillverkas för en mängd olika ändamål, till exempel för färjor och hydrografi. USV har tekniskt sett funnits i cirka 80 år, men det är först inom de relativt senaste åren utvecklingen inom miniatyrisering av komponenter och datorer har möjliggjort konstruktion av USV:s av en liten storlek. Den främsta fördelen med USV är att de kan utföra annars kostsamma och mödosamma uppgifter som ursprungligen utfördes av bemannade fordon. De kan också köras på elektriska batterier; vilket begränsar effekten på miljön jämfört med de fossila bränslen som används i traditionella fordon. I detta projekt, utfört på Swedish Maritime Robotics Center vid KTH Stockholm, utvecklades en liten USV för att utföra djupmätningar av vattendrag. Den kan styras via fjärrkontroll och har den hårdvara som krävs för att navigera självständigt. Denna rapport går igenom de steg som projektgruppen tog för att utveckla USV:n. I projektet ingick att studera tidigare arbeten, välja och beställa komponenter, skapa tekniska diagram, utveckla programmeringen och testning. 11 komponenter installerades medan flera planerade inte ingick på grund av tidsbrist. Testning av fjärrkontrollen och GNSS-loggningen var lyckade.
|
7 |
Near Realtime Object Detection : Optimizing YOLO Models for Efficiency and Accuracy for Computer Vision ApplicationsAbo Khalaf, Mulham January 2024 (has links)
Syftet med denna studie är att förbättra effektiviteten och noggrannheten hos YOLO-modeller genom att optimera dem, särskilt när de står inför begränsade datorresurser. Det akuta behovet av objektigenkänning i nära realtid i tillämpningar som övervakningssystem och autonom körning understryker betydelsen av bearbetningshastighet och exceptionell noggrannhet. Avhandlingen fokuserar på svårigheterna med att implementera komplexa modeller för objektidentifiering på enheter med låg kapacitet, nämligen Jetson Orin Nano. Den föreslår många optimeringsmetoder för att övervinna dessa hinder. Vi utförde flera försök och gjorde metodologiska förbättringar för att minska bearbetningskraven och samtidigt bibehålla en stark prestanda för objektdetektering. Viktiga komponenter i forskningen inkluderar noggrann modellträning, användning av bedömningskriterier och undersökning av optimeringseffekter på modellprestanda i verkliga miljöer. Studien visar att det är möjligt att uppnå optimal prestanda i YOLO-modeller trots begränsade resurser, vilket ger betydande framsteg inom datorseende och maskininlärning. / The objective of this study is to improve the efficiency and accuracy of YOLO models by optimizing them, particularly when faced with limited computing resources. The urgent need for near realtime object recognition in applications such as surveillance systems and autonomous driving underscores the significance of processing speed and exceptional accuracy. The thesis focuses on the difficulties of implementing complex object identification models on low-capacity devices, namely the Jetson Orin Nano. It suggests many optimization methods to overcome these obstacles. We performed several trials and made methodological improvements to decrease processing requirements while maintaining strong object detecting performance. Key components of the research include meticulous model training, the use of assessment criteria, and the investigation of optimization effects on model performance in reallife settings. The study showcases the feasibility of achieving optimal performance in YOLO models despite limited resources, bringing substantial advancements in computer vision and machine learning.
|
8 |
Parallelizing Digital Signal Processing for GPUEkstam Ljusegren, Hannes, Jonsson, Hannes January 2020 (has links)
Because of the increasing importance of signal processing in today's society, there is a need to easily experiment with new ways to process signals. Usually, fast-performing digital signal processing is done with special-purpose hardware that are difficult to develop for. GPUs pose an alternative for fast performing digital signal processing. The work in this thesis is an analysis and implementation of a GPU version of a digital signal processing chain provided by SAAB. Through an iterative process of development and testing, a final implementation was achieved. Two benchmarks, both comprised of 4.2 M test samples, were made to compare the CPU implementation with the GPU implementation. The benchmark was run on three different platforms: a desktop computer, a NVIDIA Jetson AGX Xavier and a NVIDIA Jetson TX2. The results show that the parallelized version can reach several magnitudes higher throughput than the CPU implementation.
|
9 |
Machine Learning Aided Millimeter Wave System for Real Time Gait AnalysisAlanazi, Mubarak Alayyat 10 August 2022 (has links)
No description available.
|
10 |
An Improved Extrinsic Calibration Framework for Low-cost Lidar and Camerapeng, tao 20 December 2022 (has links)
No description available.
|
Page generated in 0.0262 seconds