• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution à la modélisation du comportement différé du massif rocheux fracturé / Contribution to the modeling of delayed behaviour of the fractured rock mass

Zheng, Lifeng 24 July 2014 (has links)
La stabilité à court terme et à long terme sont deux aspects importants dans l'analyse de la stabilité des pentes. L'objectif de cette étude est de proposer des modèles numériques pour simuler le comportement mécanique à court terme et à long terme de la matrice rocheuse et joints rocheux. Pour la matrice rocheuse, un modèle élasto- endommagement qui prend les deux situations, de compression et de traction en compte est utilisé. Un paramètre est introduit pour mettre l'accent sur l'influence de la pression de confinement. Et puis un modèle de fluage de la matrice rocheuse qui compte le paramètre de dommages comme une variable dépendant du temps est proposé. Les résultats des simulations montrent un exact accord avec les résultats expérimentaux. Généralement, joints rocheux sont la partie la plus fragile dans les structures rocheuses. Pour joints rocheux, l'aspérité de la surface commune est représentée par un paramètre JRC. Ce paramètre est lié à l'angle de frottement, et donc affecte la rigidité en cisaillement de joint. Dans ce travail, un modèle constitutif est employé sur la base de cette théorie présentée, et le paramètre JRC est proposé comme une variable dépendante du temps, ce qui représente la dégradation de l’aspérité avec le passage du temps. Une simulation est réalisée et vérifiée que ce modèle est capable de décrire les phénomènes de fluage. Extended finite element method (XFEM) est introduit et appliqué dans le modèle de joint de décrire exactement l'état réel des joints. Une simulation d'une structure complexe est effectuée à la fin pour vérifier la capacité de simuler de ces modèles. / Short-term and long-term stability are two important aspects in analyzing slope stability. The objective of this study is to propose the numerical models to simulate the short and long-term mechanical behaviour of rock matrix and rock joint. For rock matrix, one elasto-damage model which takes both the compressive and tensile situations into account is employed. One parameter is introduced to emphasize the influence of confining pressures. And then one creep model for rock matrix which considering the damage parameter as a time-dependent variable is proposed. The simulation results show great agreement with experimental results. Generally, rock joints are the most fragile part in rock structures. For rock joint, the asperity of joint surface is represented by a parameter JRC. This parameter is related to the friction angle, and then affects the shear stiffness of joint. In this work, a constitutive model is employed based on this theory, and then the parameter JRC is proposed to be a time-dependent variable, which represents the graduate degradation of joint asperity with time passage. One simulation is performed and verified that this model is capable to describe creep phenomena. The extended finite element (XFEM) theory is introduced and applied in the joint model to exactly describe the real condition of joint. A simulation of one complicated structure is performed at last to verify the simulating ability of these models.
2

Stabilité des massifs rocheux : une approche mécanique

Duriez, Jérôme 20 November 2009 (has links) (PDF)
Résumé La prédiction efficace des éboulements rocheux constitue un des moyens pour se prémunirvis-à-vis du risque naturel représenté par les chutes de blocs. Les joints rocheux jouant un rôle décisif dans le déclenchement de ces éboulements, il faut décrire du mieux possible le comportement mécanique de ceux-ci, et en particulier leur rupture. Une nouvelle loi de comportement de joint rocheux, incrémentalement non linéaire, est ainsi proposée, parallèlement à l'utilisation du critère du “travail du second ordre” pour détecter les conditions impliquant un éboulement. La définition de la loi se base sur un modèle numérique de joint rocheux, utilisant la méthode aux Éléments Discrets via le code Yade. Une fois le comportement des joints rocheux investigué grâce à ce modèle numérique (en lien avec des résultats expérimentaux), et la loi définie puis validée, cette-dernière est étudiée vis-à-vis de ce critère du travail du second ordre. L'existence de “directions instables” de sollicitation, susceptibles d'entraîner la rupture du joint rocheux avant le critère de Mohr-Coulomb, est ainsi mise en évidence. Ces directions instables dépendent tout particulièrement des couplages entre les directions normale et tangentielle du joint rocheux. Une falaise existante est enfin analysée : les “Gorges de Valabres”, situées dans les Alpes-Maritimes. L'analyse est effectuée en utilisant la nouvelle loi de comportement, et le critère du travail du second ordre, dans le cadre d'un modèle numérique discret de la falaise. On observe alors que des sollicitations du chargement simulé correspondent pour certains joints à des directions instables.
3

Contribution à l'étude des mécanismes de plastification autour d'une barre d'ancrage scellée dans le rocher

Krocker, Carsten 02 April 1996 (has links) (PDF)
Une modélisation du comportement d'un ancrage passif est proposé prenant en compte les trois matériaux. acier, scellement et roche, et leurs comportements spéciflques. Le comportement d'un forage cimenté soumis à une pression intérieure est étudié en deux dimensions. Les relations entre la pressIon appliquée sur le scellmnent et le déplacement correspondant sont établies pour les différents états du scellement et de la roche (élasticité, fracturé, plastique). Une simulation numèrique permet. de comparer les comportements successifs d'un forage cimenté, lorsqu'il est soumis à un chargement intérieur axisymétrique puis à un chargement uniaxial, qui se rapproche de celui exercé par une barre soumise à un déplacement transversal. La relation analytique entre pression et déplacement est appliquée à la modélisation tridimensionneile d'un ancrage soumis àun cisaillement au niveau d'un joint. Une méthode basée sur une décomposition de la barre en tranches et en éléments est proposée pour des petites déformations. Elle permet de calculer les efforts mobilisès dans la barre et sa déformation, en fonction du déplacement imposé au joint.
4

Mechanical behavior of rock joints : influence of joint roughness on its closure and shear behavior / Comportement mécanique de joint rocheux : influence de leur rugosité dans le comportement de fermeture et cisaillement / Comportamiento mecánico de juntas rocosas : influencia de la rugosidad en los fenómenos de cierre y cizalladura

Varela Valdez, Alberto 17 September 2015 (has links)
Le comportement mécanique en cisaillement sous contrainte normale constante de joints rocheux est étudié en utilisant une approche numérique par éléments discrets (DEM Discrete Element Model). Les influences respectives de la rugosité des surfaces des joints, de l'élasticité des épontes, de la rupture des aspérités de surface et du niveau de contrainte de compression sur les comportements en fermeture et cisaillement des joints rocheux sont particulièrement analysées. Pour la première fois la rugosité des joints considérée comme auto-affine est utilisée avec DEM pour étudier le frottement des joints rocheux. Cette rugosité est décrite par l’intermédiaire de trois paramètres :exposant de rugosité auto-affine, longueur de corrélation auto-affine et variance des fluctuations de hauteur. Sur la base d’un algorithme fondé sur la méthode spectrale, huit surfaces auto-affines isotropes correspondant à différentes rugosités ont été générées. Ces surfaces numériques sont utilisées comme moules permettant de générer les surfaces composées d’éléments discrets utilisées dans la suite de l’étude. La modélisation par éléments discrets s’appuie sur une calibration des propriétés élastiques effectuée à partir d’un volume élémentaire représentatif suivie de l’implémentation d’un critère elliptique de contraintes de rupture (au niveau des lois d’union entre éléments) permettant de simuler les grandes lignes du comportement quasi-fragile d’un mortier(utilisé lors d’expérimentations antérieures). Sur cette base et une fois les surfaces rugueuses implémentées dans les modèles DEM, les essais de fermeture (test de compression) des huit joints sont effectués sous deux niveaux de contrainte de compression : 14 MPa et 21 MPa. Par la suite, les joints sont cisaillés selon deux directions perpendiculaires. Pour chaque direction de cisaillement et chaque niveau de contrainte de compression, les joints sont testés en utilisant trois modèles mécaniques différents : 1) modèle rigide dans lequel, à l’exception des surfaces de joint en contact,les épontes ne peuvent pas se déformer, 2) modèle élastique dans lequel les épontes peuvent se déformer dans leur volume et 3) modèle élastique-fracture dans lequel les épontes peuvent se déformer dans leur volume et les liens entre les particules peuvent rompre selon le critère elliptique de contrainte. L'utilisation de ces trois modèles mécaniques différents permet d'étudier de façon systématique l'influence de la rugosité seule (modèle rigide), l'influence de l'élasticité et de la rugosité (modèle élastique) et enfin, l'effet combiné de la rugosité, de l'élasticité et de la rupture(modèle élastique-fracture). L’étude des résultats obtenus lors des simulations DEM est accompagnée d’une analyse énergétique permettant d’estimer l’évolution de l’énergie élastique stockée dans le système, de l’énergie de friction, du travail associé à la dilatance du joint et de l’énergie dissipée au cours de l’essai de cisaillement. / The shear behavior of rock joints under constant normal stress is studied using Discrete Element Method (DEM). The respective influences of joint surface roughness, elasticity of medium, fracture of surface asperities, and level of compression load on the closure and shear behaviors of rock joints are particularly analyzed. For the first time the roughness of the joints considered as self-affine is use dwith DEM to study the friction of rock joints, the roughness is described through three parameters:self-affine roughness exponent, self-affine correlation length and height variance. Using a numerical algorithm based on spectral method, eight isotropic self-affine surfaces corresponding to different roughness are generated. Latter, numerical surfaces are used as molds to generate the discrete elements surfaces. The discrete element modeling is premised on a preliminary calibration of the elastic properties performed on a representative elementary volume and on the implementation of the fracture properties (elliptic fracture criterion expressed in stress) describing with a reasonable accuracy the quasi-brittle fracture behavior of mortar (used in previous experimental tests). On this basis and once the roughness surfaces implemented in DEM, the simulations of the compression/closure test are performed on the eight joints and this for two compression stress levels: 14 MPa and 21 MPa. Then, the eight DEM joints are sheared along two perpendicular directions. For each shear direction and each level of compression stress, the joints are tested through three different mechanical models: 1) rigid model in which the medium cannot deform excepted at the contact surface of joints, 2) elastic model in which the medium can deform in its volume and 3) elastic-fracture model in which the medium can deform in its volume and the bondsbetween discrete elements can failed according to the elliptic fracture criterion. The use of these three mechanical models allows studying systematically the influence of the roughness alone (rigidmodel), the influence of elasticity and roughness (elastic model) and finally, the combined effect ofthe joint roughness, of the elasticity and of the fracture (elastic-fracture model). The study of the results obtained from the DEM simulations is followed by an energetic analysis allowing theestimation of the evolutions, as a function of the shear displacement, of the elastic energy stored inthe system, of the friction energy, of the work related to the joint dilatancy and of the energy dissipated by internal damping of the DEM. / En esta tesis se estudia la fricción en juntas rocosas utilizando el Método de Elementos Discretos (DEM). En particular, se estudia la influencia de la rugosidad de las superficies de la junta, la elasticidad, la fractura, y el nivel de carga de compresión sobre el comportamiento de cierre y de cizalla de las juntas rocosas. Por primera vez la rugosidad de las juntas considerada como auto-afín esutilizada para estudiar la fricción de juntas rocosas, la rugosidad se describe mediante tres parámetros: el exponente de rugosidad, la longitud de correlación auto-afín y la varianza de alturas. Mediante un algoritmo de computadora basado en métodos espectrales, ocho superficies autoafines isotrópicas con diferente rugosidad fueron creadas. Posteriormente, las ocho superficies fueron utilizadas como moldes para generar las juntas utilizando elementos discretos. Antes de realizar las simulaciones de compresión y cizallaura, se calibraron las propiedades elásticas y defractura (criterio de fractura elíptico basado en esfuerzos) de las juntas numéricas a los datos experimentales (obtenidos previamente) de unas muestras de mortero mediante la utilización de un volumen elemental representativo (REV). Una vez que las propiedades mecánicas de las juntas se obtuvieron mediante la calibración del REV, se realizaron las pruebas de cierre (prueba de compresión) de las ocho juntas DEM. Se utilizaron dos niveles de esfuerzo de compresión para laspruebas de cierre: 14 MPa y 21 MPa. Después, las ocho juntas DEM fueron cizalladas en dos direcciones mutuamente perpendiculares. Para cada dirección de cizalla y cada nivel de esfuerzo decompresión (14 y 21 MPa), las juntas fueron cizalladas usando uno de los tres modelos mecánicos siguientes: 1) un modelo rígido, en el que las juntas no se pueden deformar, excepto en su superficie,2) un modelo puramente elástico, en el que las juntas se pueden deformar en todo su volumen y 3)un modelo elástico con fractura en el que las juntas se pueden deformar en su volumen y, si elesfuerzo sobre las uniones entre partículas excede cierto nivel de esfuerzo máximo, las uniones se rompen de una manera irreversible. El uso de estos tres modelos mecánicos nos permitirá estudiar de manera sistemática: la influencia de la rugosidad (modelo rígido), la influencia de la elasticidad y rugosidad (modelo puramente elástico) y, finalmente, el efecto combinado de la rugosidad de las juntas, la elasticidad y la fractura (modelo elástico con fractura). El estudio de los resultados obtenidos de las simulaciones DEM es seguido por una análisis energético el cual permite estudiar la evolución de los diferentes tipos de energía en función del desplazamiento de cizalla: energía elástica almacenada en el sistema, energía de fricción entre elementos discretos, el trabajo relacionado conla dilatación de la junta y la energía disipada por el amortiguamiento interno del DEM.

Page generated in 0.0576 seconds