• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Localização de corrente e efeito Joule em manganitas com ordenamento de carga / Current localization and Joule self-heating effects in manganites with charge ordered

Carneiro, Alessandro de Souza 19 December 2005 (has links)
Este trabalho contempla um estudo sistemático das propriedades elétricas de óxidos cerâmicos a base de manganês. Ênfase foi dada a sistemas onde uma correlação forte entre os graus de liberdade de carga, spin e rede com ordenamento orbital resultam em um estado fundamental heterogêneo, devido a uma separação de fases. Com esse objetivo, foram preparadas amostras policristalinas e monocristalinas de Nd0.5Ca0.5Mn1-xCrxO3, 0.0 x 0.07. A caracterização destas amostras, via medidas de transporte elétrico (T) e de susceptibilidade magnética (T), revelou a ocorrência de uma temperatura de ordenamento de carga CO em TCO 250 K e que uma substituição pequena de Mn por Cr resulta na supressão desse estado CO, induzindo uma transição de fase do tipo metal-isolante (MI) no sistema. Concomitantemente a esta transição MI observa-se uma transição de fase do estado paramagnético PA isolante para um estado ferromagnético FM metálico em TMI ~ TC ~ 140 K. A análise combinada dos resultados experimentais de resistividade elétrica (T,H), magnetização (T) e de espectroscopia de impedância Z(,T) revelaram uma coexistência e competição entre fases na determinação do estado fundamental dessas manganitas. Tal competição foi observada ocorrer em uma larga faixa de temperatura, ou seja, abaixo da temperatura TCO 250 K até a mais baixa temperatura estudada de 1.4 K. Os dados também permitiram concluir que a natureza do estado fundamental desses materiais compreende de uma mistura de fases isolantes entre as temperaturas TCO 250 K e TMI ~ TC ~ 140 K. Por outro lado, e abaixo de TMI, o estado fundamental do sistema pode ser visualizado como sendo composto de uma fina mistura de duas fases: uma com ordenamento de carga e orbital (CO/OO) e de caráter isolante e uma outra ordenada ferromagneticamente FM e com características metálicas. A natureza deste estado fundamental heterogêneo foi confirmada através de medidas de relaxação da resistência elétrica (T,t) obtidas nas duas regiões de temperatura acima citadas. Os dados de (T,t) ainda permitiram concluir que o estado fundamental desses materiais além de heterogêneo é dinâmico, como esperado em um cenário de separação de fases. Uma outra característica desse estado heterogêneo, notadamente abaixo de TMI, é que o mesmo responde de forma não convencional a estímulos diversos, incluindo grandes excitações de corrente elétrica aplicada I. Nesse contexto, a natureza heterogênea do estado CO para T < TCO, bem como da coexistência de fases CO e FM em T < TMI foi provada via um estudo sistemático das propriedades de transporte e magnetização usando diferentes intensidades de corrente elétrica aplicada em medidas de (T,I), M(T,I) e através de curvas características V-I. A observação de fenômenos não lineares, principalmente em curvas características V-I, indicou que os mesmos são precursores de transições de fase abruptas, quando altas densidades de corrente são aplicadas nos materiais. Os dados também permitiram concluir que a corrente elétrica não é distribuída homogeneamente neste estado fundamental heterogêneo. Isto implica em uma localização de corrente e conseqüente efeito Joule dentro do material. A dissipação devido ao efeito Joule é responsável por um auto-aquecimento do material e pode ser suficiente para induzir transições de fase devido ao aumento de temperatura da amostra. A aplicação de um modelo simples de dissipação de calor aplicado aos dados experimentais indicam que o fenômeno de localização de corrente e efeito Joule são fundamentais para o entendimento de transições de fase induzidas por corrente elétrica nessas manganitas. / A systematic study of the electrical properties in doped manganese oxides is presented. Special attention was given to compositions where the strong correlation between charge, spin, and lattice degrees of freedom with orbital ordering resulting in a heterogeneous ground state leads to phase separation. To do this work, polycrystalline and monocrystalline Nd0,5Ca0,5Mn1-xCrxO3, 0,0 x 0,07 samples were prepared. The results obtained through electrical transport (T) and, magnetic susceptibility (T) have revealed the occurrence of charge ordering at TCO 250 K. A small partial substitution of Mn by Cr results in a suppression of the long range charge ordering state and induces both a magnetic from paramagnetic PA to ferromagnetic FM and a electronic from insulating to metallic phase transition at TMI ~ TC ~ 140 K. A combined analysis of the experimental results performed through (T,H), (T), and impedance spectroscopy Z(,T) revealed the coexistence of competing phases in the ground state of these manganites. Such a competition has been found in a large temperature range, from TCO 250 down to 1,4 K. In addition, it is suggested that the ground state comprises a delicate mixture of insulating phases between TCO 250 K e TMI ~ TC ~ 140 K. On the other hand, below TMI, the ground state can be visualized as comprised of two phases: (1) insulating charge orbital ordering (CO/OO) and (2) ferromagnetic metallic phases. The nature of this heterogeneous ground state was confirmed through relaxation measurements (T,t) performed in both temperature intervals cited above. The data indicated that besides to be heterogeneous this ground state is dynamical, as expected in the phase separation scenario. Moreover, this ground state responds in an unconventional fashion when the system is stimulated by electrical current, notably below TMI. Within this context, the heterogeneous nature of the CO state for T < TCO, and the coexistence of CO and FM phases for T < TMI, were studied through magnetic and electrical measurements using electrical current of different magnitude (T,I), M(T,I) and characteristic V-I curves. The non-linear phenomena are precursors of the very sharp transition when high electrical current density is applied. The data also allows to conclude that the electrical current is not homogeneously distributed throughout the sample in this ground state. Differently, the electrical current is localized in thin channels bringing about a large self-heating Joule effect. We argue that the dissipation due to Joule effect is responsible for the self-heating which in turn is large enough to induce phase transition due to the temperature raise. The application of a simple heat dissipation model to the experimental data reveals that both the electrical current localization phenomenon and the Joule effect are very important to the understanding of the current-induced phase transition in these manganites.
2

Localização de corrente e efeito Joule em manganitas com ordenamento de carga / Current localization and Joule self-heating effects in manganites with charge ordered

Alessandro de Souza Carneiro 19 December 2005 (has links)
Este trabalho contempla um estudo sistemático das propriedades elétricas de óxidos cerâmicos a base de manganês. Ênfase foi dada a sistemas onde uma correlação forte entre os graus de liberdade de carga, spin e rede com ordenamento orbital resultam em um estado fundamental heterogêneo, devido a uma separação de fases. Com esse objetivo, foram preparadas amostras policristalinas e monocristalinas de Nd0.5Ca0.5Mn1-xCrxO3, 0.0 x 0.07. A caracterização destas amostras, via medidas de transporte elétrico (T) e de susceptibilidade magnética (T), revelou a ocorrência de uma temperatura de ordenamento de carga CO em TCO 250 K e que uma substituição pequena de Mn por Cr resulta na supressão desse estado CO, induzindo uma transição de fase do tipo metal-isolante (MI) no sistema. Concomitantemente a esta transição MI observa-se uma transição de fase do estado paramagnético PA isolante para um estado ferromagnético FM metálico em TMI ~ TC ~ 140 K. A análise combinada dos resultados experimentais de resistividade elétrica (T,H), magnetização (T) e de espectroscopia de impedância Z(,T) revelaram uma coexistência e competição entre fases na determinação do estado fundamental dessas manganitas. Tal competição foi observada ocorrer em uma larga faixa de temperatura, ou seja, abaixo da temperatura TCO 250 K até a mais baixa temperatura estudada de 1.4 K. Os dados também permitiram concluir que a natureza do estado fundamental desses materiais compreende de uma mistura de fases isolantes entre as temperaturas TCO 250 K e TMI ~ TC ~ 140 K. Por outro lado, e abaixo de TMI, o estado fundamental do sistema pode ser visualizado como sendo composto de uma fina mistura de duas fases: uma com ordenamento de carga e orbital (CO/OO) e de caráter isolante e uma outra ordenada ferromagneticamente FM e com características metálicas. A natureza deste estado fundamental heterogêneo foi confirmada através de medidas de relaxação da resistência elétrica (T,t) obtidas nas duas regiões de temperatura acima citadas. Os dados de (T,t) ainda permitiram concluir que o estado fundamental desses materiais além de heterogêneo é dinâmico, como esperado em um cenário de separação de fases. Uma outra característica desse estado heterogêneo, notadamente abaixo de TMI, é que o mesmo responde de forma não convencional a estímulos diversos, incluindo grandes excitações de corrente elétrica aplicada I. Nesse contexto, a natureza heterogênea do estado CO para T < TCO, bem como da coexistência de fases CO e FM em T < TMI foi provada via um estudo sistemático das propriedades de transporte e magnetização usando diferentes intensidades de corrente elétrica aplicada em medidas de (T,I), M(T,I) e através de curvas características V-I. A observação de fenômenos não lineares, principalmente em curvas características V-I, indicou que os mesmos são precursores de transições de fase abruptas, quando altas densidades de corrente são aplicadas nos materiais. Os dados também permitiram concluir que a corrente elétrica não é distribuída homogeneamente neste estado fundamental heterogêneo. Isto implica em uma localização de corrente e conseqüente efeito Joule dentro do material. A dissipação devido ao efeito Joule é responsável por um auto-aquecimento do material e pode ser suficiente para induzir transições de fase devido ao aumento de temperatura da amostra. A aplicação de um modelo simples de dissipação de calor aplicado aos dados experimentais indicam que o fenômeno de localização de corrente e efeito Joule são fundamentais para o entendimento de transições de fase induzidas por corrente elétrica nessas manganitas. / A systematic study of the electrical properties in doped manganese oxides is presented. Special attention was given to compositions where the strong correlation between charge, spin, and lattice degrees of freedom with orbital ordering resulting in a heterogeneous ground state leads to phase separation. To do this work, polycrystalline and monocrystalline Nd0,5Ca0,5Mn1-xCrxO3, 0,0 x 0,07 samples were prepared. The results obtained through electrical transport (T) and, magnetic susceptibility (T) have revealed the occurrence of charge ordering at TCO 250 K. A small partial substitution of Mn by Cr results in a suppression of the long range charge ordering state and induces both a magnetic from paramagnetic PA to ferromagnetic FM and a electronic from insulating to metallic phase transition at TMI ~ TC ~ 140 K. A combined analysis of the experimental results performed through (T,H), (T), and impedance spectroscopy Z(,T) revealed the coexistence of competing phases in the ground state of these manganites. Such a competition has been found in a large temperature range, from TCO 250 down to 1,4 K. In addition, it is suggested that the ground state comprises a delicate mixture of insulating phases between TCO 250 K e TMI ~ TC ~ 140 K. On the other hand, below TMI, the ground state can be visualized as comprised of two phases: (1) insulating charge orbital ordering (CO/OO) and (2) ferromagnetic metallic phases. The nature of this heterogeneous ground state was confirmed through relaxation measurements (T,t) performed in both temperature intervals cited above. The data indicated that besides to be heterogeneous this ground state is dynamical, as expected in the phase separation scenario. Moreover, this ground state responds in an unconventional fashion when the system is stimulated by electrical current, notably below TMI. Within this context, the heterogeneous nature of the CO state for T < TCO, and the coexistence of CO and FM phases for T < TMI, were studied through magnetic and electrical measurements using electrical current of different magnitude (T,I), M(T,I) and characteristic V-I curves. The non-linear phenomena are precursors of the very sharp transition when high electrical current density is applied. The data also allows to conclude that the electrical current is not homogeneously distributed throughout the sample in this ground state. Differently, the electrical current is localized in thin channels bringing about a large self-heating Joule effect. We argue that the dissipation due to Joule effect is responsible for the self-heating which in turn is large enough to induce phase transition due to the temperature raise. The application of a simple heat dissipation model to the experimental data reveals that both the electrical current localization phenomenon and the Joule effect are very important to the understanding of the current-induced phase transition in these manganites.
3

Charge-carrier dynamics in organic LEDs

Kirch, Anton 27 February 2023 (has links)
Anyone who decides to buy a new mobile phone today is likely to buy a screen made from organic light-emitting diodes (OLEDs). OLEDs are a relatively new display technology and will probably account for the largest market share in the upcoming years. This is due to their brilliant colors, high achievable display resolution, and comparably simple processing. Since they are not based on the rigid crystal structure of classical semiconductors and can be produced as planar thin-film modules, they also enable the fabrication of large-area lamps on flexible substrates – an attractive scenario for future lighting systems. Despite these promising properties, the breakthrough of OLED lighting technology is still pending and requires further research. The charge-carrier dynamics in an OLED determine its device functionality and, therefore, enable the understanding of fundamental physical concepts and phenomena. From the description of charge-carrier dynamics, this work derives experimental methods and device concepts to optimize the efficiency and stability of OLEDs. OLEDs feature an electric current of charge carriers (electrons and holes) that are intended to recombine under the emission of light. This process is preceded by charge-carrier injection and their transport to the emission layer. These three aspects are discussed together in this work. First, a method is presented that quantifies injection resistances using a simple experiment. It provides a valuable opportunity to better understand and optimize injection layers. Subsequently, the charge carrier transport at high electrical currents, as required for OLEDs as bright lighting elements, will be investigated. Here, electro-thermal effects are presented that form physical limits for the design and function of OLED modules and explain their sudden failure. Finally, the dynamics and recombination of electro-statically bound charge carrier pairs, so-called excitons, are examined. Various options are presented for manipulating exciton dynamics in such a way that the emission behavior of the OLED can be adjusted according to specific requirements.:List of publications . . . . . . . . . . . . . . . . . v List of abbreviations . . . . . . . . . . . . . . . . . ix 1 Introduction . . . . . . . . . . . . . . . . . 1 2 Fundamentals . . . . . . . . . . . . . . . . . 5 2.1 Light sources and the human society . . . . . . . . . . . . . . . . . 5 2.1.1 Human light perception . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Physical light quantification . . . . . . . . . . . . . . . . . . 10 2.1.3 Non-visual light impact . . . . . . . . . . . . . . . . . . . . . 13 2.1.4 Implications for modern light sources . . . . . . . . . . . . . 15 2.2 Organic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Molecular energy states . . . . . . . . . . . . . . . . . . . . . 18 2.2.2 Intramolecular state transitions . . . . . . . . . . . . . . . . 24 2.2.3 Molecular films . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.4 Electrical doping . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.5 Charge-carrier transport . . . . . . . . . . . . . . . . . . . . 36 2.2.6 Exciton formation and recombination . . . . . . . . . . . . . 38 2.2.7 Exciton transfer . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.3 Organic light-emitting diodes . . . . . . . . . . . . . . . . . . . . . 44 2.3.1 Structure and operation principle . . . . . . . . . . . . . . . 44 2.3.2 Metal-semiconductor interfaces . . . . . . . . . . . . . . . . 47 2.3.3 Typical operation characteristics . . . . . . . . . . . . . . . . 49 2.4 Colloidal nanocrystal emitters . . . . . . . . . . . . . . . . . . . . . 52 2.4.1 Terminology: Nanocrystals and quantum dots . . . . . . . . 52 2.4.2 The particle-in-a-box model . . . . . . . . . . . . . . . . . . 54 2.4.3 Surface passivation . . . . . . . . . . . . . . . . . . . . . . . 55 3 Materials and methods . . . . . . . . . . . . . . . . . 57 3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1.1 OLED materials . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1.2 Materials for photoluminescence . . . . . . . . . . . . . . . . 60 3.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2.1 Thermal evaporation . . . . . . . . . . . . . . . . . . . . . . 62 3.2.2 Solution processing . . . . . . . . . . . . . . . . . . . . . . . 64 3.3 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.1 Absorbance spectroscopy . . . . . . . . . . . . . . . . . . . . 66 3.3.2 Photoluminescence quantum yield . . . . . . . . . . . . . . . 66 3.3.3 Excitation sources . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.4 Sensitive EQE for absorber materials . . . . . . . . . . . . . 68 3.4 Exciton-lifetime analysis . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.1 Triplet lifetime . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.2 Singlet-state lifetime . . . . . . . . . . . . . . . . . . . . . . 70 3.4.3 Lifetime extraction . . . . . . . . . . . . . . . . . . . . . . . 70 3.5 OLED characterization . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.5.1 Current-voltage-luminance and quantum efficiency . . . . . . 73 3.5.2 Temperature-controlled evaluation . . . . . . . . . . . . . . . 74 4 Charge-carrier injection into doped organic films . . . . . . . . . . . . . . . . . 77 4.1 Ohmic injection contacts . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2 Device architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.2 Device symmetry . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.3 Device homogeneity . . . . . . . . . . . . . . . . . . . . . . . 83 4.3 Resistance characteristics . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . 84 4.3.2 Equivalent-circuit development . . . . . . . . . . . . . . . . 85 4.4 Impedance spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.1 Measurement fundamentals . . . . . . . . . . . . . . . . . . 92 4.4.2 Thickness dependence . . . . . . . . . . . . . . . . . . . . . 93 4.4.3 Temperature dependence . . . . . . . . . . . . . . . . . . . . 95 4.5 Depletion zone variation . . . . . . . . . . . . . . . . . . . . . . . . 97 4.6 Molybdenum oxide as a case study . . . . . . . . . . . . . . . . . . 99 5 Charge-carrier transport and self-heating in OLED lighting . . . . . . . . . . . . . . . . .101 5.1 Joule self-heating in OLEDs . . . . . . . . . . . . . . . . . . . . . . 104 5.1.1 Electrothermal feedback . . . . . . . . . . . . . . . . . . . . 104 5.1.2 Thermistors . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.1.3 Cooling strategies . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2 Self-heating causes lateral luminance inhomogeneities in OLEDs . . 108 5.2.1 The influence of transparent electrodes . . . . . . . . . . . . 108 5.2.2 Luminance inhomogeneities in large OLED panels . . . . . . 110 5.3 Electrothermal OLED models . . . . . . . . . . . . . . . . . . . . . 112 5.3.1 Perceiving an OLED as thermistor array . . . . . . . . . . . 112 5.3.2 The OLED as a single three-layer thermistor . . . . . . . . . 114 5.3.3 A numerical 3D model of heat and current flow . . . . . . . 116 5.4 OLED stack and experimental conception . . . . . . . . . . . . . . 118 5.5 The Switch-back effect in planar light sources . . . . . . . . . . . . 120 5.5.1 Predictions from numerical 3D modeling . . . . . . . . . . . 121 5.5.2 Experimental proof . . . . . . . . . . . . . . . . . . . . . . . 124 5.5.3 Variation of vertical heat flux . . . . . . . . . . . . . . . . . 127 5.5.4 Variation of the OLED area . . . . . . . . . . . . . . . . . . 131 5.6 Electrothermal tristabilities in OLEDs . . . . . . . . . . . . . . . . 133 5.6.1 Observing different burn-in schematics . . . . . . . . . . . . 133 5.6.2 Bistability and tristability in organic semiconductors . . . . 134 5.6.3 Experimental indications for attempted branch hopping . . . 138 5.6.4 Saving bright OLEDs from burning in . . . . . . . . . . . . 144 5.6.5 Taking another view onto the camera pictures . . . . . . . . 145 6 Charge-carrier recombination and exciton management . . . . . . . . . . . . . . . . .147 6.1 Optical down conversion . . . . . . . . . . . . . . . . . . . . . . . . 149 6.1.1 Spectral reshaping of visible OLEDs . . . . . . . . . . . . . 149 6.1.2 Infrared-emitting OLEDs . . . . . . . . . . . . . . . . . . . . 155 6.2 Dual-state Förster transfer . . . . . . . . . . . . . . . . . . . . . . . 158 6.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.2.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.3 Singlet fission and triplet fusion in rubrene . . . . . . . . . . . . . . 161 6.3.1 Photoluminescence of pure and doped rubrene films . . . . . 163 6.3.2 Electroluminescence transients of rubrene OLEDs . . . . . . 172 6.4 Charge transfer-state tuning by electric fields . . . . . . . . . . . . . 177 6.4.1 CT-state tuning via doping variation . . . . . . . . . . . . . 177 6.4.2 CT-state tuning via voltage . . . . . . . . . . . . . . . . . . 180 6.5 Excursus: Exciton-spin mixing for wavelength identification . . . . 183 6.5.1 Characteristics of the active film . . . . . . . . . . . . . . . . 184 6.5.2 Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 6.5.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 6.5.5 Application demonstrations . . . . . . . . . . . . . . . . . . 192 6.5.6 All-organic device . . . . . . . . . . . . . . . . . . . . . . . . 195 6.5.7 Device limitations and prospects . . . . . . . . . . . . . . . . 198 7 Conclusion and outlook . . . . . . . . . . . . . . . . . 207 7.1 Charge-carrier injection into doped films . . . . . . . . . . . . . . . 207 7.2 Charge-carrier transport in hot OLEDs . . . . . . . . . . . . . . . . 208 7.2.1 Prospects for OLED lighting facing tristable behavior . . . . 209 7.2.2 Outlook: Accessing the hidden PDR 2 region . . . . . . . . . 210 7.3 Charge-carrier recombination and spin mixing . . . . . . . . . . . . 211 7.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 7.3.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Bibliography. . . . . . . . . . . . . . . . . 215 Acknowledgements . . . . . . . . . . . . . . . . . 249 / Wer sich heute für ein neues Mobiltelefon entscheidet, kauft damit wahrscheinlich einen Bildschirm aus organischen Leuchtdioden (OLEDs). Durch ihre brillanten Farben, die hohe erreichbare Auflösung und eine vergleichsweise einfache Prozessierung werden OLEDs als relativ neue Bildschirmtechnologie in den nächsten Jahren wohl den größten Marktanteil ausmachen. Da sie nicht auf der starren Kristallstruktur klassischer Halbleiter beruhen und als planare Dünnschichtmodule produziert werden können, ermöglichen sie außerdem die Fertigung großer Flächenstrahler auf flexiblen Substraten – ein sehr attraktives Szenario für zukünftige Beleuchtungssysteme. Trotz dieser vielversprechenden Eigenschaften steht der Durchbruch der OLED-Technologie als Leuchtmittel noch aus und erfordert weitere Forschung. Die Dynamik der Ladungsträger (Elektronen und Löcher) in einer OLED charakterisiert wichtige Teile der Bauteilfunktion und ermöglicht daher das Verständnis grundlegender physikalischer Konzepte und Phänomene. Diese Arbeit leitet anhand dieser Beschreibung experimentelle Methoden und Bauteilkonzepte ab, um die Effizienz und Stabilität von OLEDs zu optimieren. OLEDs zeichnen sich dadurch aus, dass ein elektrischer Strom aus Ladungsträgern (Elektronen und Löchern) möglichst effizient unter Aussendung von Licht rekombiniert. Diesem Prozess geht eine Ladungsträgerinjektion und deren Transport zur Emissionsschicht voraus. Diese drei Aspekte werden in dieser Arbeit zusammenhängend diskutiert. Als erstes wird eine Methode vorgestellt, die Injektionswiderstände anhand eines einfachen Experimentes quantifiziert. Sie bildet eine wertvolle Möglichkeit, Injektionsschichten besser zu verstehen und zu optimieren. Anschließend wird der Ladungsträgertransport bei hohen elektrischen Strömen untersucht, wie sie für OLEDs als helle Beleuchtungselemente nötig sind. Hier werden elektro-thermische Effekte vorgestellt, die physikalische Grenzen für das Design und die Funktion von OLED Modulen bilden und deren plötzliches Versagen erklären. Abschließend wird die Dynamik der stark elektrostatisch gebundenen Ladungsträgerpaare, sogenannter Exzitonen, kurz vor deren Rekombination untersucht. Es werden verschiedene Möglichkeiten vorgestellt sie so zu manipulieren, dass sich das Abstrahlverhalten der OLED anhand bestimmter Anforderungen einstellen lässt.:List of publications . . . . . . . . . . . . . . . . . v List of abbreviations . . . . . . . . . . . . . . . . . ix 1 Introduction . . . . . . . . . . . . . . . . . 1 2 Fundamentals . . . . . . . . . . . . . . . . . 5 2.1 Light sources and the human society . . . . . . . . . . . . . . . . . 5 2.1.1 Human light perception . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Physical light quantification . . . . . . . . . . . . . . . . . . 10 2.1.3 Non-visual light impact . . . . . . . . . . . . . . . . . . . . . 13 2.1.4 Implications for modern light sources . . . . . . . . . . . . . 15 2.2 Organic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Molecular energy states . . . . . . . . . . . . . . . . . . . . . 18 2.2.2 Intramolecular state transitions . . . . . . . . . . . . . . . . 24 2.2.3 Molecular films . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.4 Electrical doping . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.5 Charge-carrier transport . . . . . . . . . . . . . . . . . . . . 36 2.2.6 Exciton formation and recombination . . . . . . . . . . . . . 38 2.2.7 Exciton transfer . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.3 Organic light-emitting diodes . . . . . . . . . . . . . . . . . . . . . 44 2.3.1 Structure and operation principle . . . . . . . . . . . . . . . 44 2.3.2 Metal-semiconductor interfaces . . . . . . . . . . . . . . . . 47 2.3.3 Typical operation characteristics . . . . . . . . . . . . . . . . 49 2.4 Colloidal nanocrystal emitters . . . . . . . . . . . . . . . . . . . . . 52 2.4.1 Terminology: Nanocrystals and quantum dots . . . . . . . . 52 2.4.2 The particle-in-a-box model . . . . . . . . . . . . . . . . . . 54 2.4.3 Surface passivation . . . . . . . . . . . . . . . . . . . . . . . 55 3 Materials and methods . . . . . . . . . . . . . . . . . 57 3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1.1 OLED materials . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1.2 Materials for photoluminescence . . . . . . . . . . . . . . . . 60 3.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2.1 Thermal evaporation . . . . . . . . . . . . . . . . . . . . . . 62 3.2.2 Solution processing . . . . . . . . . . . . . . . . . . . . . . . 64 3.3 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.1 Absorbance spectroscopy . . . . . . . . . . . . . . . . . . . . 66 3.3.2 Photoluminescence quantum yield . . . . . . . . . . . . . . . 66 3.3.3 Excitation sources . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.4 Sensitive EQE for absorber materials . . . . . . . . . . . . . 68 3.4 Exciton-lifetime analysis . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.1 Triplet lifetime . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.2 Singlet-state lifetime . . . . . . . . . . . . . . . . . . . . . . 70 3.4.3 Lifetime extraction . . . . . . . . . . . . . . . . . . . . . . . 70 3.5 OLED characterization . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.5.1 Current-voltage-luminance and quantum efficiency . . . . . . 73 3.5.2 Temperature-controlled evaluation . . . . . . . . . . . . . . . 74 4 Charge-carrier injection into doped organic films . . . . . . . . . . . . . . . . . 77 4.1 Ohmic injection contacts . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2 Device architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.2 Device symmetry . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.3 Device homogeneity . . . . . . . . . . . . . . . . . . . . . . . 83 4.3 Resistance characteristics . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . 84 4.3.2 Equivalent-circuit development . . . . . . . . . . . . . . . . 85 4.4 Impedance spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.1 Measurement fundamentals . . . . . . . . . . . . . . . . . . 92 4.4.2 Thickness dependence . . . . . . . . . . . . . . . . . . . . . 93 4.4.3 Temperature dependence . . . . . . . . . . . . . . . . . . . . 95 4.5 Depletion zone variation . . . . . . . . . . . . . . . . . . . . . . . . 97 4.6 Molybdenum oxide as a case study . . . . . . . . . . . . . . . . . . 99 5 Charge-carrier transport and self-heating in OLED lighting . . . . . . . . . . . . . . . . .101 5.1 Joule self-heating in OLEDs . . . . . . . . . . . . . . . . . . . . . . 104 5.1.1 Electrothermal feedback . . . . . . . . . . . . . . . . . . . . 104 5.1.2 Thermistors . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.1.3 Cooling strategies . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2 Self-heating causes lateral luminance inhomogeneities in OLEDs . . 108 5.2.1 The influence of transparent electrodes . . . . . . . . . . . . 108 5.2.2 Luminance inhomogeneities in large OLED panels . . . . . . 110 5.3 Electrothermal OLED models . . . . . . . . . . . . . . . . . . . . . 112 5.3.1 Perceiving an OLED as thermistor array . . . . . . . . . . . 112 5.3.2 The OLED as a single three-layer thermistor . . . . . . . . . 114 5.3.3 A numerical 3D model of heat and current flow . . . . . . . 116 5.4 OLED stack and experimental conception . . . . . . . . . . . . . . 118 5.5 The Switch-back effect in planar light sources . . . . . . . . . . . . 120 5.5.1 Predictions from numerical 3D modeling . . . . . . . . . . . 121 5.5.2 Experimental proof . . . . . . . . . . . . . . . . . . . . . . . 124 5.5.3 Variation of vertical heat flux . . . . . . . . . . . . . . . . . 127 5.5.4 Variation of the OLED area . . . . . . . . . . . . . . . . . . 131 5.6 Electrothermal tristabilities in OLEDs . . . . . . . . . . . . . . . . 133 5.6.1 Observing different burn-in schematics . . . . . . . . . . . . 133 5.6.2 Bistability and tristability in organic semiconductors . . . . 134 5.6.3 Experimental indications for attempted branch hopping . . . 138 5.6.4 Saving bright OLEDs from burning in . . . . . . . . . . . . 144 5.6.5 Taking another view onto the camera pictures . . . . . . . . 145 6 Charge-carrier recombination and exciton management . . . . . . . . . . . . . . . . .147 6.1 Optical down conversion . . . . . . . . . . . . . . . . . . . . . . . . 149 6.1.1 Spectral reshaping of visible OLEDs . . . . . . . . . . . . . 149 6.1.2 Infrared-emitting OLEDs . . . . . . . . . . . . . . . . . . . . 155 6.2 Dual-state Förster transfer . . . . . . . . . . . . . . . . . . . . . . . 158 6.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.2.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.3 Singlet fission and triplet fusion in rubrene . . . . . . . . . . . . . . 161 6.3.1 Photoluminescence of pure and doped rubrene films . . . . . 163 6.3.2 Electroluminescence transients of rubrene OLEDs . . . . . . 172 6.4 Charge transfer-state tuning by electric fields . . . . . . . . . . . . . 177 6.4.1 CT-state tuning via doping variation . . . . . . . . . . . . . 177 6.4.2 CT-state tuning via voltage . . . . . . . . . . . . . . . . . . 180 6.5 Excursus: Exciton-spin mixing for wavelength identification . . . . 183 6.5.1 Characteristics of the active film . . . . . . . . . . . . . . . . 184 6.5.2 Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 6.5.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 6.5.5 Application demonstrations . . . . . . . . . . . . . . . . . . 192 6.5.6 All-organic device . . . . . . . . . . . . . . . . . . . . . . . . 195 6.5.7 Device limitations and prospects . . . . . . . . . . . . . . . . 198 7 Conclusion and outlook . . . . . . . . . . . . . . . . . 207 7.1 Charge-carrier injection into doped films . . . . . . . . . . . . . . . 207 7.2 Charge-carrier transport in hot OLEDs . . . . . . . . . . . . . . . . 208 7.2.1 Prospects for OLED lighting facing tristable behavior . . . . 209 7.2.2 Outlook: Accessing the hidden PDR 2 region . . . . . . . . . 210 7.3 Charge-carrier recombination and spin mixing . . . . . . . . . . . . 211 7.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 7.3.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Bibliography. . . . . . . . . . . . . . . . . 215 Acknowledgements . . . . . . . . . . . . . . . . . 249
4

A Vertical C60 Transistor with a Permeable Base Electrode / Ein vertikaler C60-Transistor mit einer permeablen Basiselektrode

Fischer, Axel 26 October 2015 (has links) (PDF)
A high performance vertical organic transistor based on the organic semiconductor C60 is developed in this work. The sandwich geometry of this transistor, well known from organic light-emitting diodes or organic solar cells, allows for a short transfer length of charge carriers in vertical direction. In comparison to conventional organic field-effect transistors with lateral current flow, much smaller channel lengths are reached, even if low resolution and low-cost shadow masks are used. As a result, the transistor operates at low voltages (1 V), drives current densities in the range of 10 A/cm², and enables a switching speed in the MHz range. The operation mechanism is studied in detail. It is demonstrated that the transistor can be described by a nano-porous permeable base electrode insulated by a thin native aluminum oxide film on its surface. Thus, the transistor has to be understood as two metal-oxide-semiconductor diodes, sharing a common electrode, the base. Upon applying a bias to the base, charges accumulate in front of the oxide, similar to the channel formation in a field-effect transistor. Due to the increased conductivity in this region, charges are efficiently transported toward and through the pinholes of the base electrode, realizing a high charge carrier transmission. Thus, even a low concentration of openings in the base electrode is sufficient to ensure large transmission currents. The device concept turns out to be ideal for applications where high transconductance and high operation frequency are needed, e.g. in analog amplifier circuits. The full potential of the transistor is obtained if the active area is structured by an insulating layer in order to perfectly align the three electrodes. Besides that, molecular doping near the charge injecting contact is essential to minimize the contact resistance. Due to the high power density in the vertical C60 transistor, Joule self-heating occurs, which is discussed in this work in the context of organic semiconductors. The large activation energies of the electrical conductivity observed cause the presence of S-shaped current-voltage characteristics and result in thermal switching as well as negative differential resistances, as demonstrated for several two-terminal devices. A detailed understanding of these processes is important to determine restrictions and proceed with further optimizations. / In dieser Arbeit wird ein vertikaler organischer Transistor mit hoher Leistungsfähigkeit vorgestellt, der auf dem organischen Halbleiter C60 basiert. Die von organischen Leuchtdioden und organischen Solarzellen bekannte \'Sandwich’-Geometrie wird verwendet, so dass es möglich ist, für die vertikale Stromrichtung kurze Transferlängen der Ladungsträger zu erreichen. Im Vergleich zum konventionellen organischen Feldeffekttransistor mit lateralem Stromfluss werden dadurch viel kleinere Kanallängen erreicht, selbst wenn preisgünstige Schattenmasken mit geringer Auflösung für die thermische Verdampfung im Vakuum genutzt werden. Daher kann der Transistor bei einer Betriebsspannung von 1 V Stromdichten im Bereich von 10 A/cm² und Schaltgeschwindigkeiten im MHz-Bereich erreichen. Obwohl diese Technologie vielversprechend ist, fehlt bislang ein umfassendes Verständnis des Funktionsmechanismus. Hier wird gezeigt, dass der Transistor eine nanoporöse Basiselektrode hat, die durch ein natives Oxid auf ihrer Oberfläche elektrisch isoliert ist. Daher kann das Bauelement als zwei Metall-Oxid-Halbleiter-Dioden verstanden werden, die sich eine gemeinsame Elektrode, die Basis, teilen. Unter Spannung akkumulieren Ladungsträger vor dem Oxid, ähnlich zur Ausbildung eines Ladungsträgerkanals im Feldeffekttransistor. Aufgrund der erhöhten Leitfähigkeit in dieser Region werden Ladungsträger effizient zu und durch die Öffnungen der Basis transportiert, was zu hohen Ladungsträgertransmissionen führt. Selbst bei einer geringen Konzentration von Löchern in der Basiselektrode werden so hohe Transmissionsströme erzielt. Das Bauelementkonzept ist ideal für Anwendungen, in denen eine hohe Transkonduktanz und eine hohe Schaltgeschwindigkeit erreicht werden soll, z.B. in analogen Schaltkreisen, die kleine Signale verarbeiten. Das volle Potential des Transistors offenbart sich jedoch, wenn die aktive Fläche durch eine Isolatorschicht strukturiert wird, um den Überlapp der drei Elektroden zu optimieren, so dass Leckströme minimiert werden. Daneben ist die Dotierung der Molekülschichten am Emitter essentiell, um Kontaktwiderstände zu vermeiden. Aufgrund der hohen Leistungsdichten in den vertikalen C60-Transistoren kommt es zur Selbsterwärmung, die in dieser Arbeit im Kontext organischen Halbleiter diskutiert wird. Die große Aktivierungsenergie der Leitfähigkeit führt zu S-förmigen Strom-Spannungs-Kennlinien und hat thermisches Umschalten sowie negative differentielle Widerstände zur Folge, was für verschiedene Bauelemente demonstriert wird. Ein detailliertes Verständnis dieser Prozesse ist wichtig, um Beschränkungen für Anwendungen zu erkennen und um entsprechende Verbesserungen einzuführen.
5

A Vertical C60 Transistor with a Permeable Base Electrode

Fischer, Axel 11 September 2015 (has links)
A high performance vertical organic transistor based on the organic semiconductor C60 is developed in this work. The sandwich geometry of this transistor, well known from organic light-emitting diodes or organic solar cells, allows for a short transfer length of charge carriers in vertical direction. In comparison to conventional organic field-effect transistors with lateral current flow, much smaller channel lengths are reached, even if low resolution and low-cost shadow masks are used. As a result, the transistor operates at low voltages (1 V), drives current densities in the range of 10 A/cm², and enables a switching speed in the MHz range. The operation mechanism is studied in detail. It is demonstrated that the transistor can be described by a nano-porous permeable base electrode insulated by a thin native aluminum oxide film on its surface. Thus, the transistor has to be understood as two metal-oxide-semiconductor diodes, sharing a common electrode, the base. Upon applying a bias to the base, charges accumulate in front of the oxide, similar to the channel formation in a field-effect transistor. Due to the increased conductivity in this region, charges are efficiently transported toward and through the pinholes of the base electrode, realizing a high charge carrier transmission. Thus, even a low concentration of openings in the base electrode is sufficient to ensure large transmission currents. The device concept turns out to be ideal for applications where high transconductance and high operation frequency are needed, e.g. in analog amplifier circuits. The full potential of the transistor is obtained if the active area is structured by an insulating layer in order to perfectly align the three electrodes. Besides that, molecular doping near the charge injecting contact is essential to minimize the contact resistance. Due to the high power density in the vertical C60 transistor, Joule self-heating occurs, which is discussed in this work in the context of organic semiconductors. The large activation energies of the electrical conductivity observed cause the presence of S-shaped current-voltage characteristics and result in thermal switching as well as negative differential resistances, as demonstrated for several two-terminal devices. A detailed understanding of these processes is important to determine restrictions and proceed with further optimizations.:CONTENTS Publications, patents and conference contributions 9 1 Introduction 13 2 Theory 19 2.1 From small molecules to conducting thin films . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Aromatic hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Solid state physics of molecular materials . . . . . . . . . . . . . . . . . . . 24 2.1.3 Energetic landscape of an organic semiconductor . . . . . . . . . . . . . . 26 2.1.4 Charge transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2 Semiconductor structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2.1 Semiconductor statistics and transport . . . . . . . . . . . . . . . . . . . . 42 2.2.2 Charge injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.3 Limitations of the current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.2.4 Metal-oxide-semiconductor structures . . . . . . . . . . . . . . . . . . . . . 57 2.3 Self-heating theory of thermistor device . . . . . . . . . . . . . . . . . . . . . . . . 61 3 Organic transistors 65 3.1 The organic field-effect transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.1.1 Basic principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.1.2 Device characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.1.3 Device geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.4 Device parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.1.5 Issues of OFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.1.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2 Overview over vertical organic transistors . . . . . . . . . . . . . . . . . . . . . . . 76 3.2.1 VOTs with an unstructured base electrode . . . . . . . . . . . . . . . . . . . 76 3.2.2 VOTs with structured base electrode . . . . . . . . . . . . . . . . . . . . . . 79 3.2.3 Charge injection modulating transistors . . . . . . . . . . . . . . . . . . . . 82 3.2.4 Vertical organic field-effect transistor . . . . . . . . . . . . . . . . . . . . . . 85 3.2.5 Development of the scientific output . . . . . . . . . . . . . . . . . . . . . . 87 3.2.6 Competing technologies and approaches . . . . . . . . . . . . . . . . . . . 88 3.3 Vertical Organic Triodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.1 Stucture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.2 Electronic configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.3 Energetic alignment of the diodes . . . . . . . . . . . . . . . . . . . . . . . 92 3.3.4 Current flow in the on and the off-state . . . . . . . . . . . . . . . . . . . . 94 3.3.5 Definition and extraction of parameters . . . . . . . . . . . . . . . . . . . . 95 4 Experimental 101 4.1 General processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1.1 Thermal vapor deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1.2 Processing tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.1.3 Processing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2 Mask setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.3 Measurement setups and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3.1 Current-voltage measurements . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3.2 Frequency-dependent measurements . . . . . . . . . . . . . . . . . . . . . 108 4.3.3 Impedance Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3.4 Ultraviolet and X-ray Photoelectron Spectroscopy . . . . . . . . . . . . . . . 110 4.3.5 Thermal imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.4 Materials used in C60 triodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.1 Buckminsterfullerene C60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.2 Tungsten paddlewheel W2(hpp)4 . . . . . . . . . . . . . . . . . . . . . . . . 116 4.4.3 Aluminum and its oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.4.4 Spiro-TTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.5 Materials used in Organic Light-emitting Diodes . . . . . . . . . . . . . . . . . . . 121 5 Introduction of C60 VOTs 123 5.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.2 Diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.3 Base sweep measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.4 Determination of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.5 Common-base connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.6 Output characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.7 Frequency-dependent measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.8 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6 Effect of annealing 141 6.1 Charge carrier transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.2 Sheet resistance and transmittance of the base electrode . . . . . . . . . . . . . . 142 6.3 Investigation of morphological changes . . . . . . . . . . . . . . . . . . . . . . . . 144 6.4 Photoelectron spectroscopy of the base electrode . . . . . . . . . . . . . . . . . . 153 6.5 Influence of air exposure and annealing onto the dopants . . . . . . . . . . . . . . 159 6.6 Electrical characteristics of the diodes . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.7 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 7 Working Mechanism 167 7.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.2 Diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.3 Simulation and modeling of the diode characteristics . . . . . . . . . . . . . . . . . 173 7.4 Interpretation of the operation mechanism . . . . . . . . . . . . . . . . . . . . . . . 181 7.5 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 8 Optimization of VOTs 183 8.1 Misalignment of the electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 8.2 Use of doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 8.3 Variation of the intrinsic layer thickness . . . . . . . . . . . . . . . . . . . . . . . . . 190 8.4 Structuring the active area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 8.5 High-frequency operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 8.6 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 9 Self-heating in organic semiconductors 209 9.1 Temperature activation in C60 triodes . . . . . . . . . . . . . . . . . . . . . . . . . . 210 9.2 nin-C60 crossbar structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 9.3 Thermal switching in organic semiconductors . . . . . . . . . . . . . . . . . . . . . 216 9.4 Self-heating in large area devices: Organic LEDs . . . . . . . . . . . . . . . . . . . 218 9.5 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 10 Conclusion and Outlook 227 10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 10.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 A Appendix 233 A.1 Appendix 1: Accuracy of the current gain . . . . . . . . . . . . . . . . . . . . . . . 233 A.2 Appendix 2: Fit of XRR measurements . . . . . . . . . . . . . . . . . . . . . . . . . 234 A.3 Appendix 3: Atomic force microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 236 A.4 Appendix 4: Transmission electron microscopy . . . . . . . . . . . . . . . . . . . . 236 A.5 Appendix 5: Drift-diffusion simulation of nin devices . . . . . . . . . . . . . . . . . 239 A.6 Appendix 6: A simple parallel thermistor circuit . . . . . . . . . . . . . . . . . . . . 241 List of Figures 245 References 290 / In dieser Arbeit wird ein vertikaler organischer Transistor mit hoher Leistungsfähigkeit vorgestellt, der auf dem organischen Halbleiter C60 basiert. Die von organischen Leuchtdioden und organischen Solarzellen bekannte \'Sandwich’-Geometrie wird verwendet, so dass es möglich ist, für die vertikale Stromrichtung kurze Transferlängen der Ladungsträger zu erreichen. Im Vergleich zum konventionellen organischen Feldeffekttransistor mit lateralem Stromfluss werden dadurch viel kleinere Kanallängen erreicht, selbst wenn preisgünstige Schattenmasken mit geringer Auflösung für die thermische Verdampfung im Vakuum genutzt werden. Daher kann der Transistor bei einer Betriebsspannung von 1 V Stromdichten im Bereich von 10 A/cm² und Schaltgeschwindigkeiten im MHz-Bereich erreichen. Obwohl diese Technologie vielversprechend ist, fehlt bislang ein umfassendes Verständnis des Funktionsmechanismus. Hier wird gezeigt, dass der Transistor eine nanoporöse Basiselektrode hat, die durch ein natives Oxid auf ihrer Oberfläche elektrisch isoliert ist. Daher kann das Bauelement als zwei Metall-Oxid-Halbleiter-Dioden verstanden werden, die sich eine gemeinsame Elektrode, die Basis, teilen. Unter Spannung akkumulieren Ladungsträger vor dem Oxid, ähnlich zur Ausbildung eines Ladungsträgerkanals im Feldeffekttransistor. Aufgrund der erhöhten Leitfähigkeit in dieser Region werden Ladungsträger effizient zu und durch die Öffnungen der Basis transportiert, was zu hohen Ladungsträgertransmissionen führt. Selbst bei einer geringen Konzentration von Löchern in der Basiselektrode werden so hohe Transmissionsströme erzielt. Das Bauelementkonzept ist ideal für Anwendungen, in denen eine hohe Transkonduktanz und eine hohe Schaltgeschwindigkeit erreicht werden soll, z.B. in analogen Schaltkreisen, die kleine Signale verarbeiten. Das volle Potential des Transistors offenbart sich jedoch, wenn die aktive Fläche durch eine Isolatorschicht strukturiert wird, um den Überlapp der drei Elektroden zu optimieren, so dass Leckströme minimiert werden. Daneben ist die Dotierung der Molekülschichten am Emitter essentiell, um Kontaktwiderstände zu vermeiden. Aufgrund der hohen Leistungsdichten in den vertikalen C60-Transistoren kommt es zur Selbsterwärmung, die in dieser Arbeit im Kontext organischen Halbleiter diskutiert wird. Die große Aktivierungsenergie der Leitfähigkeit führt zu S-förmigen Strom-Spannungs-Kennlinien und hat thermisches Umschalten sowie negative differentielle Widerstände zur Folge, was für verschiedene Bauelemente demonstriert wird. Ein detailliertes Verständnis dieser Prozesse ist wichtig, um Beschränkungen für Anwendungen zu erkennen und um entsprechende Verbesserungen einzuführen.:CONTENTS Publications, patents and conference contributions 9 1 Introduction 13 2 Theory 19 2.1 From small molecules to conducting thin films . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Aromatic hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Solid state physics of molecular materials . . . . . . . . . . . . . . . . . . . 24 2.1.3 Energetic landscape of an organic semiconductor . . . . . . . . . . . . . . 26 2.1.4 Charge transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2 Semiconductor structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2.1 Semiconductor statistics and transport . . . . . . . . . . . . . . . . . . . . 42 2.2.2 Charge injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.3 Limitations of the current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.2.4 Metal-oxide-semiconductor structures . . . . . . . . . . . . . . . . . . . . . 57 2.3 Self-heating theory of thermistor device . . . . . . . . . . . . . . . . . . . . . . . . 61 3 Organic transistors 65 3.1 The organic field-effect transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.1.1 Basic principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.1.2 Device characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.1.3 Device geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.4 Device parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.1.5 Issues of OFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.1.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2 Overview over vertical organic transistors . . . . . . . . . . . . . . . . . . . . . . . 76 3.2.1 VOTs with an unstructured base electrode . . . . . . . . . . . . . . . . . . . 76 3.2.2 VOTs with structured base electrode . . . . . . . . . . . . . . . . . . . . . . 79 3.2.3 Charge injection modulating transistors . . . . . . . . . . . . . . . . . . . . 82 3.2.4 Vertical organic field-effect transistor . . . . . . . . . . . . . . . . . . . . . . 85 3.2.5 Development of the scientific output . . . . . . . . . . . . . . . . . . . . . . 87 3.2.6 Competing technologies and approaches . . . . . . . . . . . . . . . . . . . 88 3.3 Vertical Organic Triodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.1 Stucture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.2 Electronic configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.3 Energetic alignment of the diodes . . . . . . . . . . . . . . . . . . . . . . . 92 3.3.4 Current flow in the on and the off-state . . . . . . . . . . . . . . . . . . . . 94 3.3.5 Definition and extraction of parameters . . . . . . . . . . . . . . . . . . . . 95 4 Experimental 101 4.1 General processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1.1 Thermal vapor deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1.2 Processing tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.1.3 Processing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2 Mask setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.3 Measurement setups and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3.1 Current-voltage measurements . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3.2 Frequency-dependent measurements . . . . . . . . . . . . . . . . . . . . . 108 4.3.3 Impedance Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3.4 Ultraviolet and X-ray Photoelectron Spectroscopy . . . . . . . . . . . . . . . 110 4.3.5 Thermal imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.4 Materials used in C60 triodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.1 Buckminsterfullerene C60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.2 Tungsten paddlewheel W2(hpp)4 . . . . . . . . . . . . . . . . . . . . . . . . 116 4.4.3 Aluminum and its oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.4.4 Spiro-TTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.5 Materials used in Organic Light-emitting Diodes . . . . . . . . . . . . . . . . . . . 121 5 Introduction of C60 VOTs 123 5.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.2 Diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.3 Base sweep measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.4 Determination of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.5 Common-base connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.6 Output characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.7 Frequency-dependent measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.8 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6 Effect of annealing 141 6.1 Charge carrier transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.2 Sheet resistance and transmittance of the base electrode . . . . . . . . . . . . . . 142 6.3 Investigation of morphological changes . . . . . . . . . . . . . . . . . . . . . . . . 144 6.4 Photoelectron spectroscopy of the base electrode . . . . . . . . . . . . . . . . . . 153 6.5 Influence of air exposure and annealing onto the dopants . . . . . . . . . . . . . . 159 6.6 Electrical characteristics of the diodes . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.7 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 7 Working Mechanism 167 7.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.2 Diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.3 Simulation and modeling of the diode characteristics . . . . . . . . . . . . . . . . . 173 7.4 Interpretation of the operation mechanism . . . . . . . . . . . . . . . . . . . . . . . 181 7.5 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 8 Optimization of VOTs 183 8.1 Misalignment of the electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 8.2 Use of doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 8.3 Variation of the intrinsic layer thickness . . . . . . . . . . . . . . . . . . . . . . . . . 190 8.4 Structuring the active area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 8.5 High-frequency operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 8.6 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 9 Self-heating in organic semiconductors 209 9.1 Temperature activation in C60 triodes . . . . . . . . . . . . . . . . . . . . . . . . . . 210 9.2 nin-C60 crossbar structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 9.3 Thermal switching in organic semiconductors . . . . . . . . . . . . . . . . . . . . . 216 9.4 Self-heating in large area devices: Organic LEDs . . . . . . . . . . . . . . . . . . . 218 9.5 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 10 Conclusion and Outlook 227 10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 10.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 A Appendix 233 A.1 Appendix 1: Accuracy of the current gain . . . . . . . . . . . . . . . . . . . . . . . 233 A.2 Appendix 2: Fit of XRR measurements . . . . . . . . . . . . . . . . . . . . . . . . . 234 A.3 Appendix 3: Atomic force microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 236 A.4 Appendix 4: Transmission electron microscopy . . . . . . . . . . . . . . . . . . . . 236 A.5 Appendix 5: Drift-diffusion simulation of nin devices . . . . . . . . . . . . . . . . . 239 A.6 Appendix 6: A simple parallel thermistor circuit . . . . . . . . . . . . . . . . . . . . 241 List of Figures 245 References 290
6

OLEDs: Light-emitting thin film thermistors revealing advanced selfheating effects

Fischer, Axel, Koprucki, Thomas, Glitzky, Annegret, Liero, Matthias, Gärtner, Klaus, Hauptmann, Jacqueline, Reineke, Sebastian, Kasemann, Daniel, Lüssem, Björn, Leo, Karl, Scholz, Reinhard 29 August 2019 (has links)
Large area OLEDs show pronounced Joule self-heating at high brightness. This heating induces brightness inhomogeneities, drastically increasing beyond a certain current level. We discuss this behavior considering 'S'-shaped negative differential resistance upon self-heating, even allowing for 'switched-back' regions where the luminance finally decreases (Fischer et al., Adv. Funct. Mater. 2014, 24, 3367). By using a multi-physics simulation the device characteristics can be modeled, resulting in a comprehensive understanding of the problem. Here, we present results for an OLED lighting panel considered for commercial application. It turns out that the strong electrothermal feedback in OLEDs prevents high luminance combined with a high degree of homogeneity unless new optimization strategies are considered.

Page generated in 0.064 seconds