• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Localização de corrente e efeito Joule em manganitas com ordenamento de carga / Current localization and Joule self-heating effects in manganites with charge ordered

Carneiro, Alessandro de Souza 19 December 2005 (has links)
Este trabalho contempla um estudo sistemático das propriedades elétricas de óxidos cerâmicos a base de manganês. Ênfase foi dada a sistemas onde uma correlação forte entre os graus de liberdade de carga, spin e rede com ordenamento orbital resultam em um estado fundamental heterogêneo, devido a uma separação de fases. Com esse objetivo, foram preparadas amostras policristalinas e monocristalinas de Nd0.5Ca0.5Mn1-xCrxO3, 0.0 x 0.07. A caracterização destas amostras, via medidas de transporte elétrico (T) e de susceptibilidade magnética (T), revelou a ocorrência de uma temperatura de ordenamento de carga CO em TCO 250 K e que uma substituição pequena de Mn por Cr resulta na supressão desse estado CO, induzindo uma transição de fase do tipo metal-isolante (MI) no sistema. Concomitantemente a esta transição MI observa-se uma transição de fase do estado paramagnético PA isolante para um estado ferromagnético FM metálico em TMI ~ TC ~ 140 K. A análise combinada dos resultados experimentais de resistividade elétrica (T,H), magnetização (T) e de espectroscopia de impedância Z(,T) revelaram uma coexistência e competição entre fases na determinação do estado fundamental dessas manganitas. Tal competição foi observada ocorrer em uma larga faixa de temperatura, ou seja, abaixo da temperatura TCO 250 K até a mais baixa temperatura estudada de 1.4 K. Os dados também permitiram concluir que a natureza do estado fundamental desses materiais compreende de uma mistura de fases isolantes entre as temperaturas TCO 250 K e TMI ~ TC ~ 140 K. Por outro lado, e abaixo de TMI, o estado fundamental do sistema pode ser visualizado como sendo composto de uma fina mistura de duas fases: uma com ordenamento de carga e orbital (CO/OO) e de caráter isolante e uma outra ordenada ferromagneticamente FM e com características metálicas. A natureza deste estado fundamental heterogêneo foi confirmada através de medidas de relaxação da resistência elétrica (T,t) obtidas nas duas regiões de temperatura acima citadas. Os dados de (T,t) ainda permitiram concluir que o estado fundamental desses materiais além de heterogêneo é dinâmico, como esperado em um cenário de separação de fases. Uma outra característica desse estado heterogêneo, notadamente abaixo de TMI, é que o mesmo responde de forma não convencional a estímulos diversos, incluindo grandes excitações de corrente elétrica aplicada I. Nesse contexto, a natureza heterogênea do estado CO para T < TCO, bem como da coexistência de fases CO e FM em T < TMI foi provada via um estudo sistemático das propriedades de transporte e magnetização usando diferentes intensidades de corrente elétrica aplicada em medidas de (T,I), M(T,I) e através de curvas características V-I. A observação de fenômenos não lineares, principalmente em curvas características V-I, indicou que os mesmos são precursores de transições de fase abruptas, quando altas densidades de corrente são aplicadas nos materiais. Os dados também permitiram concluir que a corrente elétrica não é distribuída homogeneamente neste estado fundamental heterogêneo. Isto implica em uma localização de corrente e conseqüente efeito Joule dentro do material. A dissipação devido ao efeito Joule é responsável por um auto-aquecimento do material e pode ser suficiente para induzir transições de fase devido ao aumento de temperatura da amostra. A aplicação de um modelo simples de dissipação de calor aplicado aos dados experimentais indicam que o fenômeno de localização de corrente e efeito Joule são fundamentais para o entendimento de transições de fase induzidas por corrente elétrica nessas manganitas. / A systematic study of the electrical properties in doped manganese oxides is presented. Special attention was given to compositions where the strong correlation between charge, spin, and lattice degrees of freedom with orbital ordering resulting in a heterogeneous ground state leads to phase separation. To do this work, polycrystalline and monocrystalline Nd0,5Ca0,5Mn1-xCrxO3, 0,0 x 0,07 samples were prepared. The results obtained through electrical transport (T) and, magnetic susceptibility (T) have revealed the occurrence of charge ordering at TCO 250 K. A small partial substitution of Mn by Cr results in a suppression of the long range charge ordering state and induces both a magnetic from paramagnetic PA to ferromagnetic FM and a electronic from insulating to metallic phase transition at TMI ~ TC ~ 140 K. A combined analysis of the experimental results performed through (T,H), (T), and impedance spectroscopy Z(,T) revealed the coexistence of competing phases in the ground state of these manganites. Such a competition has been found in a large temperature range, from TCO 250 down to 1,4 K. In addition, it is suggested that the ground state comprises a delicate mixture of insulating phases between TCO 250 K e TMI ~ TC ~ 140 K. On the other hand, below TMI, the ground state can be visualized as comprised of two phases: (1) insulating charge orbital ordering (CO/OO) and (2) ferromagnetic metallic phases. The nature of this heterogeneous ground state was confirmed through relaxation measurements (T,t) performed in both temperature intervals cited above. The data indicated that besides to be heterogeneous this ground state is dynamical, as expected in the phase separation scenario. Moreover, this ground state responds in an unconventional fashion when the system is stimulated by electrical current, notably below TMI. Within this context, the heterogeneous nature of the CO state for T < TCO, and the coexistence of CO and FM phases for T < TMI, were studied through magnetic and electrical measurements using electrical current of different magnitude (T,I), M(T,I) and characteristic V-I curves. The non-linear phenomena are precursors of the very sharp transition when high electrical current density is applied. The data also allows to conclude that the electrical current is not homogeneously distributed throughout the sample in this ground state. Differently, the electrical current is localized in thin channels bringing about a large self-heating Joule effect. We argue that the dissipation due to Joule effect is responsible for the self-heating which in turn is large enough to induce phase transition due to the temperature raise. The application of a simple heat dissipation model to the experimental data reveals that both the electrical current localization phenomenon and the Joule effect are very important to the understanding of the current-induced phase transition in these manganites.
2

Localização de corrente e efeito Joule em manganitas com ordenamento de carga / Current localization and Joule self-heating effects in manganites with charge ordered

Alessandro de Souza Carneiro 19 December 2005 (has links)
Este trabalho contempla um estudo sistemático das propriedades elétricas de óxidos cerâmicos a base de manganês. Ênfase foi dada a sistemas onde uma correlação forte entre os graus de liberdade de carga, spin e rede com ordenamento orbital resultam em um estado fundamental heterogêneo, devido a uma separação de fases. Com esse objetivo, foram preparadas amostras policristalinas e monocristalinas de Nd0.5Ca0.5Mn1-xCrxO3, 0.0 x 0.07. A caracterização destas amostras, via medidas de transporte elétrico (T) e de susceptibilidade magnética (T), revelou a ocorrência de uma temperatura de ordenamento de carga CO em TCO 250 K e que uma substituição pequena de Mn por Cr resulta na supressão desse estado CO, induzindo uma transição de fase do tipo metal-isolante (MI) no sistema. Concomitantemente a esta transição MI observa-se uma transição de fase do estado paramagnético PA isolante para um estado ferromagnético FM metálico em TMI ~ TC ~ 140 K. A análise combinada dos resultados experimentais de resistividade elétrica (T,H), magnetização (T) e de espectroscopia de impedância Z(,T) revelaram uma coexistência e competição entre fases na determinação do estado fundamental dessas manganitas. Tal competição foi observada ocorrer em uma larga faixa de temperatura, ou seja, abaixo da temperatura TCO 250 K até a mais baixa temperatura estudada de 1.4 K. Os dados também permitiram concluir que a natureza do estado fundamental desses materiais compreende de uma mistura de fases isolantes entre as temperaturas TCO 250 K e TMI ~ TC ~ 140 K. Por outro lado, e abaixo de TMI, o estado fundamental do sistema pode ser visualizado como sendo composto de uma fina mistura de duas fases: uma com ordenamento de carga e orbital (CO/OO) e de caráter isolante e uma outra ordenada ferromagneticamente FM e com características metálicas. A natureza deste estado fundamental heterogêneo foi confirmada através de medidas de relaxação da resistência elétrica (T,t) obtidas nas duas regiões de temperatura acima citadas. Os dados de (T,t) ainda permitiram concluir que o estado fundamental desses materiais além de heterogêneo é dinâmico, como esperado em um cenário de separação de fases. Uma outra característica desse estado heterogêneo, notadamente abaixo de TMI, é que o mesmo responde de forma não convencional a estímulos diversos, incluindo grandes excitações de corrente elétrica aplicada I. Nesse contexto, a natureza heterogênea do estado CO para T < TCO, bem como da coexistência de fases CO e FM em T < TMI foi provada via um estudo sistemático das propriedades de transporte e magnetização usando diferentes intensidades de corrente elétrica aplicada em medidas de (T,I), M(T,I) e através de curvas características V-I. A observação de fenômenos não lineares, principalmente em curvas características V-I, indicou que os mesmos são precursores de transições de fase abruptas, quando altas densidades de corrente são aplicadas nos materiais. Os dados também permitiram concluir que a corrente elétrica não é distribuída homogeneamente neste estado fundamental heterogêneo. Isto implica em uma localização de corrente e conseqüente efeito Joule dentro do material. A dissipação devido ao efeito Joule é responsável por um auto-aquecimento do material e pode ser suficiente para induzir transições de fase devido ao aumento de temperatura da amostra. A aplicação de um modelo simples de dissipação de calor aplicado aos dados experimentais indicam que o fenômeno de localização de corrente e efeito Joule são fundamentais para o entendimento de transições de fase induzidas por corrente elétrica nessas manganitas. / A systematic study of the electrical properties in doped manganese oxides is presented. Special attention was given to compositions where the strong correlation between charge, spin, and lattice degrees of freedom with orbital ordering resulting in a heterogeneous ground state leads to phase separation. To do this work, polycrystalline and monocrystalline Nd0,5Ca0,5Mn1-xCrxO3, 0,0 x 0,07 samples were prepared. The results obtained through electrical transport (T) and, magnetic susceptibility (T) have revealed the occurrence of charge ordering at TCO 250 K. A small partial substitution of Mn by Cr results in a suppression of the long range charge ordering state and induces both a magnetic from paramagnetic PA to ferromagnetic FM and a electronic from insulating to metallic phase transition at TMI ~ TC ~ 140 K. A combined analysis of the experimental results performed through (T,H), (T), and impedance spectroscopy Z(,T) revealed the coexistence of competing phases in the ground state of these manganites. Such a competition has been found in a large temperature range, from TCO 250 down to 1,4 K. In addition, it is suggested that the ground state comprises a delicate mixture of insulating phases between TCO 250 K e TMI ~ TC ~ 140 K. On the other hand, below TMI, the ground state can be visualized as comprised of two phases: (1) insulating charge orbital ordering (CO/OO) and (2) ferromagnetic metallic phases. The nature of this heterogeneous ground state was confirmed through relaxation measurements (T,t) performed in both temperature intervals cited above. The data indicated that besides to be heterogeneous this ground state is dynamical, as expected in the phase separation scenario. Moreover, this ground state responds in an unconventional fashion when the system is stimulated by electrical current, notably below TMI. Within this context, the heterogeneous nature of the CO state for T < TCO, and the coexistence of CO and FM phases for T < TMI, were studied through magnetic and electrical measurements using electrical current of different magnitude (T,I), M(T,I) and characteristic V-I curves. The non-linear phenomena are precursors of the very sharp transition when high electrical current density is applied. The data also allows to conclude that the electrical current is not homogeneously distributed throughout the sample in this ground state. Differently, the electrical current is localized in thin channels bringing about a large self-heating Joule effect. We argue that the dissipation due to Joule effect is responsible for the self-heating which in turn is large enough to induce phase transition due to the temperature raise. The application of a simple heat dissipation model to the experimental data reveals that both the electrical current localization phenomenon and the Joule effect are very important to the understanding of the current-induced phase transition in these manganites.
3

Magnetization, Magnetotransport And Electron Magnetic Resonance Studies Of Doped Praseodymium And Bismuth Based Charge Ordered Manganites

Anuradha, K N 05 1900 (has links)
Studies on perovskite rare earth manganites of general formula R1-xAxMnO3 (where R is a trivalent rare earth ion such as La3+, Pr3+ etc. and A is a divalent alkaline earth ion such as Ca2+, Sr2+, Ba2+, have been a very active research area in the last few years in condensed matter physics. Manganites have a distorted perovskite crystal structure with R and A ions situated at the cube corners, oxygen ions at the edge centers of the cube and Mn ions at the centres of the oxygen octahedra. In these manganites the Mn ions are found to be in mixed valence state i.e., in Mn3+ and Mn4+ states. In the octahedral crystal field of oxygen ions the single ion energy levels are split into t2g and eg levels. Mn3+ being a Jahn-Teller ion, the eg level is further split due to the Jahn-Teller effect. A strong Hund’s coupling between the spins in the t2g and eg levels renders the Mn3+ ions to be in the high spin state. The interplay of competing super exchange between Mn ions which determines the antiferromagnetism, orbital ordering and insulating behavior and double exchange between Mn ions which leads to ferromagnetism and metallicity gives rise to very complex phase diagrams of manganites as a function of composition, temperature and magnetic field. The strength of these interactions is determined by various factors such as the A-site cation radius and the Jahn-Teller distortion due to the presence of Mn3+ ions. The strongly coupled charge, spin, lattice and orbital degrees of freedom in manganites gives rise to complex phenomena such as colossal magnetoresistance (CMR), charge order (CO) and orbital order (OO) and phase separation (PS) etc. The properties of these materials are sensitive functions of external stimuli such as the doping, temperature and pressure [1-5] and have been extensively studied both experimentally and theoretically in single crystal, bulk polycrystalline and thin film forms of the samples [6-9]. Charge ordering is one of the fascinating properties exhibited by manganites. Charge ordering has historically been viewed as a precursor to the complex ordering of the Mn 3d orbitals, which in turn determine the magnetic interactions and these magnetic interactions are the driving force for charge localization and orbital order. This ordering of Mn3+ / Mn4+ charges can be destabilized by many methods. An external magnetic field can destabilize the charge ordered phase and drive the phase transition to the ferromagnetic metallic state [10-11]. Other than magnetic field, charge ordering can also be ‘melted’ by a variety of perturbations like electric field [12, 13], hydrostatic and chemical pressure [14-16], irradiation by X-rays [17], substitution at the Mn -site [18 -21] and A-site [22]. Of these, A-site substitution with bigger cations like barium is particularly of great interest since it does not interrupt the conduction path in the “MnO3” frame work Recently attention has been drawn towards the properties of nanoscale manganites. The nanoscale materials are expected to behave quite differently from extended solids due to quantum confinement effects and high surface/volume ratio. Nanoscale CMR manganites have been fabricated using diverse methods in the form of particles, wires, tubes and various other forms by different groups. It has been shown that the properties of CMR manganites can be tuned by reducing the particle size down to nanometer range and by changing the morphology [23-27]. As mentioned above, charge order is an interesting phase of manganites and these CO mangnites in the form of nanowires and nanoparticles show drastic changes in their properties compared to bulk. In contrast to the studies on the CMR compounds, there are very few reports on charge ordering nano manganites except on nanowires of Pr0.5Ca0..5MnO3 [28] and nanoparticles of Nd0.5Ca0.5MnO3 [29] and Pr0.5Sr0..5MnO3 [30]. This thesis is an effort in understanding certain aspects of charge order destabilization by two different methods, namely, doping bigger size cation (barium) in A-site (external perturbation) and by reducing the particle size to nano scale ( intrinsic). For this purpose we have selected the charge ordering system Pr1-xCaxMnO3 (PCMO) with composition x = 0.43. The reason behind choosing this composition is the observation [31] that CO is particularly weak for this value of x. We have prepared bulk, nanoparticles and nanowires of Pr0.57Ca0.41Ba0.02MnO3 manganite and have carried out microstructure, magnetic, magneto transport and EMR measurements to understand the nature of CO destabilization and also to understand other aspects such as magneto transport and magnetic anisotropy . Apart from destabilization of the charge order in PCMO we have also studied the bismuth based manganite Bi0.5Ca0.5MnO3. The reason behind choosing this system is the robust charge order of Bi0.5Ca0.5MnO3 compared to rare earth based manganites. So far no attempt has been made in comparing the electron paramagnetic resonance properties of bismuth based manganites with those of the rare earth based manganites. We have studied the magnetic, transport and electron paramagnetic resonance properties of Bi0.5Ca0.5MnO3 prepared by solid state reaction method and compared the results with those of Pr0.5Ca0.5MnO3 . In the following we present a chapter wise summary of the thesis. Chapter 1 of the thesis contains a brief introduction to the general features of manganites describing various interesting phenomena exhibited by them and the underlying interactions . Chapter 2 contains a detailed review of EPR studies on manganites describing the current level of understanding in the area. In this chapter we have also described the different experimental methodology adopted in this thesis. Chapter 3 reports the effect of a small amount (2%) of barium doped in the charge ordered antiferromagnetic insulating manganite Pr0.57Ca0.43MnO3. The samples were prepared by solid state synthesis and charecterized by various techniques like XRD, EDXA. The results of magnetization, magnetotransport and EPR/EMR experiments on both Pr0.57Ca0.43MnO3 and Pr0.57Ca0.41Ba0.02MnO3 are compared. The magnetization studies show that barium doping induces ferromagnetic phase in place of the CO-antiferromagnetic phase of the pristine sample at low temperatures as reported earlier by Zhu et al.,[31]. The transport studies show insulator to metal transition. The EPR parameters viz line width, intensity and ‘g’ value of Pr0.57Ca0.43MnO3 and Pr0.57Ca0.41Ba0.02MnO3 are compared. The magnetization and EPR studies reveal that the CO transition temperature TCO has shifted to a slightly lower value accompanied by a small decrease in the strength of the charge order. Thus a small amount of barium affects the CO phase of Pr0.57Ca0.43MnO3 and it also induces a ferromagnetic metallic phase at low temperature. Another most important and unexpected result of EMR experiment is the observation of high field signals, i.e. two EMR signals are observed at low temperatures in the ferromagnetic phase of Pr0.57Ca0.41Ba0.02MnO3. The appearance of the high field signals are understood in terms of the effects of magneto crystalline anisotropy. Chapter 4, reports the microstructure, magnetization and EMR studies of Pr0.57Ca0.41Ba0.02MnO3 nanoparticles prepared by sol-gel method. We have mainly focused on the effect of size on the charge ordered phase. The samples were characterized by different techniques like XRD, EDXA and TEM. The obtained particle size of the samples are 30, 60 and 100 nm respectively. We have compared the magnetic, magneto transport and EMR results of these nano samples with the bulk properties. The 30 nm particles do not show the CO phase whereas the 60 and 100 nm particles show CO signatures in DC- magnetization measurements. The EPR intensity also shows a similar trend. These results confirm that charge ordering can also be destabilized by reducing the particle size to nano scale. But the EPR linewidth which reflects the spin dynamics shows a change in the slope near the CO temperature and there by indicates the presence of premonitory charge ordering fluctuations in smaller particles. We also observed that the EMR linewidth increases with the decrease of particle size. Another striking result is the disappearance of high field signals in all the nanosamples. This is understood in terms of a decrease in the magnetic anisotropy in nanoparticles. Part of the result of this chapter is published [32]. Chapter 5, reports the morphological, magnetic and electron paramagnetic resonance studies of Pr0.57Ca0.41Ba0.02MnO3 nanowires. Recently our group has studied the nanowires of Pr0.5Ca0..5MnO3 [28]. In the nanowire sample of Pr0.5Ca0..5MnO3 only a partial suppression of CO is observed. This raises the question about the incomplete suppression of the CO in the nanowires: is this a consequence of the material being microscopic in one dimension and is it necessary to have a 3-dimensional nano material to have full suppression of the charge order ? In the present work we attempt to provide an answer to this question. PCBM nanowires of diameter 80-90 nm and length of ∼ 3.5 μm were synthesized by a low reaction temperature hydrothermal method. We have confirmed the single phase nature of the sample by XRD experiments. Scanning electron microscopy (SEM) and trasmission electron microscopy (TEM) were used to characterize the morphology and microstructures of the nanowires. The surface of nanowires was composed of particles of different grain size and interestingly some particles were hexagonal in shape. The bulk PCBM manganite exhibits charge order at 230 K along with a ferromagnetic transition at 110 K. However, SQUID measurements on PCBM nano-wires show a complete melting of the charge ordering and a ferromagnetic transition at 115 K. The magnetization observed in the nanowires was less compared to that in the bulk. EPR intensity measurements also support this result. Characteristic differences were observed in linewidth and ‘g’ factor behaviors of nanowires when compared with those of the bulk. EPR linewidth which reflects the spin dynamics shows a slope change near the CO temperature (like in nanoparticles) possibly due to charge order fluctuations in nanowires. The high field signals were absent in nanowires as well. Part of the result of this chapter is published [33]. Chapter 6 deals with the magnetic and electron paramagnetic resonance studies on Pr0.5Ca0.5MnO3 and Bi0.5Ca0.5MnO3. These manganites are prepared by solid state reaction method and characterized by different techniques like XRD and EDXA. Further, we have compared the results of magnetization and electron paramagnetic resonance properties of Pr0.5Ca0.5MnO3 with those of Bi0.5Ca0.5MnO3 manganite in the temperature range of 10- 300 K. The two charge ordered manganites show significant differences in their behavior. The temperature dependence of the EPR parameters i.e. line width, central field and intensity of Bi0.5Ca0.5MnO3 are quite different from the rare earth based manganite i.e. Pr0.5Ca0.5MnO3. Linewidth of BCMO is large compared to PCMO manganite and interestingly the temperature dependence of the central fields (CF) of PCMO and BCMO show opposite behavior. The CF of PCMO decreases with decrease in temperature as found in a large number of other CO systems, whereas CF of BCMO increases with decrease in temperature. This unusual behavior of resonance field is attributed to the different magnetic structure of BCMO system at low temperatures. Chapter 7 sums up the results reported in the thesis. The insight gained from the present work in understanding the destabilization of charge order by chemical doping and size reduction is discussed as well as the differences in the properties of bismuth and rare earth manganites. Further, we have indicated possible future directions of research in this area.

Page generated in 0.0505 seconds