Spelling suggestions: "subject:"journaux (log)"" "subject:"journaux (logo)""
1 |
Détection dynamique des intrusions dans les systèmes informatiques / Dynamic intrusion detection in computer systemsPierrot, David 21 September 2018 (has links)
La démocratisation d’Internet, couplée à l’effet de la mondialisation, a pour résultat d’interconnecter les personnes, les états et les entreprises. Le côté déplaisant de cette interconnexion mondiale des systèmes d’information réside dans un phénomène appelé « Cybercriminalité ». Des personnes, des groupes mal intentionnés ont pour objectif de nuire à l’intégrité des systèmes d’information dans un but financier ou pour servir une cause. Les conséquences d’une intrusion peuvent s’avérer problématiques pour l’existence d’une entreprise ou d’une organisation. Les impacts sont synonymes de perte financière, de dégradation de l’image de marque et de manque de sérieux. La détection d’une intrusion n’est pas une finalité en soit, la réduction du delta détection-réaction est devenue prioritaire. Les différentes solutions existantes s’avèrent être relativement lourdes à mettre place aussi bien en matière de compétence que de mise à jour. Les travaux de recherche ont permis d’identifier les méthodes de fouille de données les plus performantes mais l’intégration dans une système d’information reste difficile. La capture et la conversion des données demandent des ressources de calcul importantes et ne permettent pas forcément une détection dans des délais acceptables. Notre contribution permet, à partir d’une quantité de données relativement moindre de détecter les intrusions. Nous utilisons les événements firewall ce qui réduit les besoins en terme de puissance de calcul tout en limitant la connaissance du système d’information par les personnes en charge de la détection des intrusions. Nous proposons une approche prenant en compte les aspects techniques par l’utilisation d’une méthode hybride de fouille de données mais aussi les aspects fonctionnels. L’addition de ces deux aspects est regroupé en quatre phases. La première phase consiste à visualiser et identifier les activités réseau. La deuxième phase concerne la détection des activités anormales en utilisant des méthodes de fouille de données sur la source émettrice de flux mais également sur les actifs visés. Les troisième et quatrième phases utilisent les résultats d’une analyse de risque et d’audit technique de sécurité pour une prioritisation des actions à mener. L’ensemble de ces points donne une vision générale sur l’hygiène du système d’information mais aussi une orientation sur la surveillance et les corrections à apporter. L’approche développée a donné lieu à un prototype nommé D113. Ce prototype, testé sur une plate-forme d’expérimentation sur deux architectures de taille différentes a permis de valider nos orientations et approches. Les résultats obtenus sont positifs mais perfectibles. Des perspectives ont été définies dans ce sens. / The expansion and democratization of the digital world coupled with the effect of the Internet globalization, has allowed individuals, countries, states and companies to interconnect and interact at incidence levels never previously imagined. Cybercrime, in turn, is unfortunately one the negative aspects of this rapid global interconnection expansion. We often find malicious individuals and/or groups aiming to undermine the integrity of Information Systems for either financial gain or to serve a cause. The consequences of an intrusion can be problematic for the existence of a company or an organization. The impacts are synonymous with financial loss, brand image degradation and lack of seriousness. The detection of an intrusion is not an end in itself, the reduction of the delta detection-reaction has become a priority. The different existing solutions prove to be cumbersome to set up. Research has identified more efficient data mining methods, but integration into an information system remains difficult. Capturing and converting protected resource data does not allow detection within acceptable time frames. Our contribution helps to detect intrusions. Protect us against Firewall events which reduces the need for computing power while limiting the knowledge of the information system by intrusion detectors. We propose an approach taking into account the technical aspects by the use of a hybrid method of data mining but also the functional aspects. The addition of these two aspects is grouped into four phases. The first phase is to visualize and identify network activities. The second phase concerns the detection of abnormal activities using data mining methods on the source of the flow but also on the targeted assets. The third and fourth phases use the results of a risk analysis and a safety verification technique to prioritize the actions to be carried out. All these points give a general vision on the hygiene of the information system but also a direction on monitoring and corrections to be made.The approach developed to a prototype named D113. This prototype, tested on a platform of experimentation in two architectures of different size made it possible to validate our orientations and approaches. The results obtained are positive but perfectible. Prospects have been defined in this direction.
|
Page generated in 0.0382 seconds