• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 26
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 84
  • 17
  • 15
  • 15
  • 13
  • 12
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Greater Sage-Grouse Seasonal Habitat Models, Response to Juniper Reduction and Effects of Capture Behavior on Vital Rates, in Northwest Utah

Cook, Avery 01 May 2015 (has links)
The greater sage-grouse (Centrocercus urophasianus; sage-grouse) is a species of conservation concern in Utah and range-wide due to declines in populations and threats to sagebrush habitat on which they depend. To effectively conserve the species, detailed site-specific knowledge of ecology and distribution is needed. To expand knowledge of local populations within the West Box Elder Sage Grouse Management Area (SGMA) and gain insights into the effectiveness of vegetation treatments intended to benefit sagegrouse, I radio marked and tracked 123 (68 female, 55 male) sage-grouse and conducted sage-grouse pellet surveys on 19 conifer removal projects. Widespread habitat restoration measures designed to benefit sage-grouse have highlighted the need for prioritization tools to optimize placement of sage-grouse habitat projects. I generated seasonal habitat models to predict sage-grouse habitat use within the West Box Elder SGMA using a suite of vegetation and topographical predictors and known sage-grouse locations. Model fit was good with brood, early summer, late summer, lekking (early spring), and non-breeding models reporting an AUC of >0.90; nest and winter models reported an AUC of 0.87 and 0.85, respectively. A vegetation disturbance history was built for the study area from 1985 to 2013; however, the vegetation disturbances mapped were not a strong predictor of sage-grouse seasonal habitat-use. To evaluate effectiveness of conifer reduction treatments I used fecal pellet and in concert with radio-telemetry data. Increased sage-grouse use of conifer treatments was positively associated with sage-grouse presence in adjacent habitats (P = 0.018), percent shrub cover (P = 0.039), and mesic environments within 1000 m of treatments (P = 0.048). Sage-grouse use of conifer treatments was negatively associated with conifer canopy cover (P = 0.048) within 1000 m of treatments. To investigate sample bias related to individual bird behavior or capture trauma I monitored 204 radio-marked sage-grouse within the West Box Elder and Rich-Morgan- Summit SGMAs in Utah between January 2012 and March 2013. Sage-grouse that flushed one or more times prior to capture had higher brood (P = 0.014) and annual survival (P = 0.027) than those that did not. Sage-grouse that experienced more capture trauma had decreased annual survival probabilities (P = 0.04).
72

Descriptions, Ecological Associations and Predictive Species Distribution Models of New Species of Psilochalcis Kieffer (Hymenoptera; Chalcididae) Occurring in Utah's Eastern Great Basin

Petersen, Mark J. 18 April 2023 (has links) (PDF)
The genus Psilochalcis, of the Family Chalcididae, was originally described in 1905 by Kieffer. Mainly considered an Old-World taxon, the first North American Psilochalcis were not identified until 1981 by Grissell and Schauff. Little is known about the species distributions, biologies and ecological relationships of these parasitic wasps. This dissertation describes research conducted in central Utah setting arrays of Malaise traps in 4 different habitat types common to the Great Basin at three separate locations. A result of this sampling revealed a high abundance of multiple species of Psilochalcis wasps, particularly from one location and two habitat types. Chapter 1 describes three new species of Psilochalcis wasps namely; P. adenticulata Petersen, P. minuta Petersen, and P. quadratis Petersen. A review of all North American Psilochalcis species explains their distribution in Utah and throughout the surrounding western United States. A taxonomic key for all North American Psilochalcis species is given. Chapter 2 examines the seasonal abundance of P. minuta and P. quadratis and their associations with two common Great Basin habitat types. Both species show their highest abundance from late June through early August. Their peak abundance is shown to change dependent on the environmental conditions of temperature and precipitation. Psilochalcis minuta is significantly associated with pinyon/juniper (Pinus edulis or P. monophylla and Juniperus osteosperma) and P. quadratis is significantly associated with cheatgrass (Bromus tectorum). Chapter 3 describes the building of species distribution models for P. minuta and P. quadratis using a maximum entropy (Maxent) approach. Ten environmental variables were used to predict areas of optimal suitable habitat for each species. Multiple predicted sites were field sampled to test each model's effectiveness. Psilochalcis minuta occurred at nearly 90% of predicted sites, and P. quadratis occurred at 50% of predicted sites. Both species occurred at some non-predicted sites in other habitat types. Model analyses and field-testing results show the P. minuta model to be reliable in predicting areas of probable species occurrence, while the P. quadratis model is much less reliable in doing so. Aspect and fire disturbance show the highest percent contribution to both species' models. Slight differences in variable percent contribution between models suggest these species have sympatric distributions. Soil and slope are more important predictors of optimal suitable habitat for each species. Maintaining integrity between model predictions and field testing gave insights into other factors contributing to probable occurrence of Psilochalcis species.
73

Microbial Responses to Coarse Woody Debris in <em>Juniperus</em> and <em>Pinus</em> Woodlands

Rigby, Deborah Monique 14 March 2013 (has links) (PDF)
The ecological significance of coarse woody debris (CWD) is usually highlighted in forests where CWD constitutes much of an ecosystem's carbon (C) source and stores. However, a unique addition of CWD is occurring in semi-deserts for which there is no ecological analog. To stem catastrophic wildfires and create firebreaks, whole Juniperus osteosperma (Torr.) and Pinus edulis (Engelm.) trees are being mechanically shredded into CWD fragments and deposited on soils previously exposed to decades of tree-induced changes that encourage "tree islands of fertility." To investigate consequences of CWD on C and nitrogen (N) cycling, we evaluated microbial metabolic activity and N transformation rates in Juniperus and Pinus surface and subsurface soils that were either shredded or left untreated. We sampled three categories of tree cover on over 40 tree cover encroachment sites. Tree cover categories (LOW = 0-15%, MID ≥ 15-45%, HIGH ≥ 45%) were used to indicate tree island development at time of treatment. In conjunction with our microbial measurements, we evaluated the frequency of three exotic grasses, and thirty-five native perennial grasses to identify links between belowground and aboveground processes. The addition of CWD increased microbial biomass by almost two-fold and increased microbial efficiency, measured as the microbial quotient, at LOW Juniperus cover. C mineralization was enhanced by CWD only in Pinus soils at the edge of tree canopies. The addition of CWD had little impact on microbial activity in subsurface soils. CWD enhanced the availability of dissolved organic C (DOC) and phosphorus (P) but tended to decrease the overall quality of labile DOC, measured as the ratio of soil microbial biomass to DOC. This suggested that the increase in DOC alone or other environmental factors novel to CWD additions lead to the increase in biomass and efficiency. P concentrations were consistently higher following CWD additions for all encroachment levels. The CWD additions decreased N mineralization and nitrification in Juniperus and Pinus soils at LOW and MID tree cover but only in surface soils, suggesting that less inorganic N was available to establishing or residual plants. The frequency of native perennial grasses, especially Elymus elymoides (Raf.), was at least 65% higher under CWD additions for all categories of tree cover, while the frequencies of exotic annual and perennial grasses were not impacted by CWD. The frequency of all perennial grasses ranged from 10-27%. Our results suggest that CWD enhanced microbial activity even when the quality of C substrates declined requiring microbes to immobilize more N. The reduction in inorganic N may promote the establishment and growth of native perennial grasses. Ultimately, the addition of CWD improved soil conditions for microbes in tree islands of fertility.
74

The Impact of Surface Soil Removal on Plant Production, Transpiration Ratios, Nitrogen Mineralization Rates, Infiltration Rates, Potential Sediment Losses, and Chemical Water Quality Within the Chained and Reseeded Pinyon-Juniper Types in Utah

Lyons, Steven M. 01 May 1978 (has links)
During the period of October 1974 to August 1976, a study was conducted to measure the effects of surface soil removal on plant production, plant transpiration rates, nitrate nitrogen mineralization rates, and selected hydrologic parameters (infiltration rates, potential sediment production, and chemical quality of runoff water). The treatments were incremental 7.6 centimeter soil layers to a depth of 30.5 centimeters. Plant production and transpiration ratios (or water use efficiencies) were measured in greenhouse studies using Agrogyron desertorum grown in the incremental 7.6 centimeter soil layers from five study sites throughout the state of Utah, (Blanding, Brush Creek, Milford, Huntington, and Dove Creek). Significant decreases in plant production and increases in transpiration ratios were measured for all sites at incremental depths beyond 7.6 centimeters. These changes in plant production and transpiration ratios were found to be linearly related to the nitrate nitrogen content of the soils as determined at the time the soils were collected for use in the greenhouse. Nitrogen mineralization rates for a 6 week period were measured under field conditions at Milford and Blanding for each of the 7.6 centimeter incremental soil layers. Nitrate nitrogen mineralization was linearly correlated to the organic carbon content of the soil. Decreased mineralization rates as measured in the field at both study sites were reflected in significant increases in plant water requirements and also decreases in production as measured in greenhouse studies. Hydrologic parameters were measured at each 7.6 centimeter incremental soil depth using a Rocky Mountain infiltrometer. With one exception, significant differences in infiltration capacities among treatment depths did not occur during either 1975 or 1976 at either the Blanding or Milford site. At the Blanding site a significant decrease in the infiltration capacity occurred beyond the 22.9 centimeter depth due to a hardpan development. A significant change in infiltration capacities was noted between the 1975 and 1976 field seasons as pooled over both treatment depths and study sites. There were no significant differences in potential sediment production between sites or among treatment depths within a site. In terms of runoff water quality, a significant change in phosphorus was observed only at the Blanding site between the 1975 and 1976 field seasons. Significant differences in potassium concentrations were found to exist between sites and among soil depths.
75

A landscape-scale assessment of plant communities, hydrologic processes, and state-and-transition theory in a Western juniper dominated ecosystem

Petersen, Steven Lawrence 14 June 2004 (has links)
Western juniper has rapidly expanded into sagebrush steppe communities in the Intermountain West during the past 120 years. This expansion has occurred across a wide range of soil types and topographic positions. These plant communities, however, are typically treated in current peer-reviewed literature generically. The focus of this research is to investigate watershed level response to Western juniper encroachment at multiple topographic positions. Data collected from plots used to measure vegetation, soil moisture, and infiltration rates show that intercanopy sites within encroached Western juniper communities generally exhibit a significant decrease in intercanopy plant density and cover, decreased infiltration rates, increased water sediment content, and lower soil moisture content. High-resolution remotely sensed imagery and Geographic Information Systems were used with these plot level measurements to characterize and model the landscape-scale response for both biotic and abiotic components of a Western juniper encroached ecosystem. These data and their analyses included an inventory of plant density, plant cover, bare ground, gap distance and cover, a plant community classification of intercanopy patches and juniper canopy cover, soil moisture estimation, solar insulation prediction, slope and aspect. From these data, models were built that accurately predicted shrub density and shrub cover throughout the watershed study area, differentiated by aspect. We propose a new model of process-based plant community dynamics associated with current state-and-transition theory. This model is developed from field measurements and spatially explicit information that characterize the relationship between the matrix mountain big sagebrush plant community and intercanopy plant community patterns occurring within a Western juniper dominated woodland at a landscape scale. Model parameters (states, transitions, and thresholds) are developed based on differences in shrub density and cover, steady-state infiltration rates, water sediment content, and percent bare ground in response to juniper competition and topographic position. Results from both analysis of variance and multivariate hierarchical cluster analysis indicate that states, transitions, and thresholds can be accurately predicted for intercanopy areas occurring within the study area. In theory, this model and the GIS-based layers produced from this research can be used together to predict states, transitions, and thresholds for any location within the extent of the study area. This is a valuable tool for assessing sites at risk and those that have exceeded the ability to self-repair. / Graduation date: 2005
76

Arlaviškių kadagyno būklės tyrimai / The research Arlaviškės juniper formation state

Vaitkevičiūtė, Rasa 15 June 2009 (has links)
Magistro darbe tiriama paprastųjų kadagių būklė, pažeidimo priežastys, menkaverčių medžių ir krūmų paplitimas ir gausa, būklės pokyčiai 1998 – 2008 metais, dendrometriniai rodikliai, patrauklumas lankytojams. Darbo objektas - Dubravos eksperimentinės mokomosios miškų urėdijos Šilėnų girininkijos 61 kv. 15skl. 2,6ha plote augantis kadagynas, įeinantis i Kauno marių regioninio parko Arlaviškių botaninio draustinio teritoriją. Tyrimo tikslas - Įvertinti Arlaviškių botaniniame draustinyje augančio kadagyno būklę. Darbo metodai – instrumentinis dendrometrinių rodiklių nustatymas, vizualinis kadagių būklės, kitų medžių ir krūmų rūšių gausos įvertinimas, anketinis objekto patrauklumo lankytojams vertinimas. Darbo rezultatai – 2008 metais kadagynui nustatyti šie dendrometriniai rodikliai: Dvid= 10.1 cm, Hvid = 6.5 m, Avid = 55 m. Aukščiausi kadagiai siekia 12.5 m, storiausi – 22.5 cm. Kadagyno vidutinis tankumas 1232 vnt/ha. Kadagyno individų daugumą sudaro krūminę formą turintys kadagiai (68,1 %), likusieji 32,9 % - medeliai. Tarp medelių 30 % turi koloniškąją formą (Juniperus communis ‘Hibernica‘), bei 1–2% svyruoklinę (Juniperus communis ’Oblonga Pendula’). Kadagynas apibūdinamas kaip vidutiniškai pažeistas. Jame sveiki individai sudaro 10,8 %, įvairiu laipsniu pažeisti 68,7 %, sausuoliai – 20.5 %. Pagrindinės kadagyno pažeidimų priežastys: per tankios individų grupės ir individų tarpusavio sąveika (37,7 %), įvairūs kirtimai (46 %), šakų laužymas (11,1 %), kadagių ligos... [toliau žr. visą tekstą] / Master's work examined the conventional status of juniper, of demage causes negligible trees and shrubs prevalence and abundance, changes of state from 1998 to 2008, tree measurement indicators, attractiveness to visitors. Job object - Dubrava experimental educational forest enterprise Silėnai forestrys 61 compartment 15 sebcompartment 2.6 ha growing junipers formations, that included to the Gulf of Kaunas Regional Park Reserve of Arlaviškių botanical area. The aim of the study - To evaluate Arlaviškes botanical reserves growing junipers growing area condition. Working methods - instrumental tree measurement indicators. Visual status of juniper and other trees and shrubs of species abundance assessment. Personal assessment of the object's attractiveness to visitors. Study results - 2008 Juniper formation the following tree measurement indicators Dvid = 10.1 cm, Hvid = 6.5 m, Avid = 55 years Juniper aims to the highest 12.5 m, thick trees - 22.5 cm. Juniper formation average density of 1232 units/ha. Juniper formation individuals constitute the majority of the indigenous form of Juniper (68.1%), the remaining 32.9% - saplings. Among the trees by 30% to Juniperus communis' Hibernicus ' form, and 1 - 2% Juniperus communis' Oblonga Pendula'. Juniper formation defined as the average demage. It consists of 10.8% healthy individuals, varying the degree of prejudice to 68.7%, dry trees - 20.5%. The main causes of demage juniper formation: density of individuals within the group... [to full text]
77

An Object-Based Image Analysis of Treated and Untreated Pinyon and Juniper Woodlands Across the Great Basin

Hulet, April 07 March 2012 (has links) (PDF)
Land managers need to rapidly assess vegetation composition and bare ground to effectively evaluate, manage, and restore shrub steppe communities that have been encroached by pinyon and juniper (P-J) trees. A major part of this process is assessing where to apply mechanical and prescribed fire treatments to reduce fuel loads and maintain or restore sagebrush steppe rangelands. Geospatial technologies, particularly remote sensing, offers an efficient option to assess rangelands across multiple spatial scales while reducing the need for ground-based sampling measurements. High-spatial resolution color-infrared imagery (0.06-m pixels) was acquired for sagebrush steppe communities invaded by P-J trees at five sites in Oregon, California, Nevada, and Utah with a Vexcel Ultra CamX digital camera in June/July 2009. In addition to untreated P-J woodlands, imagery was acquired over P-J woodlands where fuels were reduced by either prescribed fire, tree cutting, or mastication treatments. Ground measurements were simultaneously collected at each site in 2009 on 0.1-hectare subplots as part of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP). We used Trimble eCognition Developer to 1) develop efficient methods to estimate land cover classes found in P-J woodlands; 2) determine the relationship between ground measurements and object-based image analysis (OBIA) land cover measurements for the following classes: trees (live, burned, cut, and masticated), shrubs, perennial herbaceous vegetation, litter (including annual species), and bare ground; and 3) evaluate eCognition rule-sets (models) across four spatial scales (subplot, site, region, and network) using untreated P-J woodland imagery. At the site scale, the overall accuracy of our thematic maps for untreated P-J woodlands was 84% with a kappa statistic of 0.80. For treatments, the overall accuracy and kappa statistic for prescribed fire was 85% and 0.81; cut and fell 82% and 0.77, and mastication 84% and 0.80, respectively, each indicating strong agreement between OBIA classification and ground measured data. Differences between mean cover estimates using OBIA and ground-measurements were not consistently higher or lower for any land cover class and when evaluated for individual sites, were within 5% of each other; all regional and network OBIA mean cover estimates were within 10% of the ground measurements. The trade-off for decreased precision over a larger area (region and network scale) may be useful to prioritize fuel-management strategies but will unlikely capture subtle shifts in understory plant communities that site and subplot spatial scales often capture. Although cover assessments from OBIA differed somewhat from ground measurements, they were accurate enough for many landscape-assessment applications such as evaluating treatment success and assessing the spatial distribution of fuels following fuel-reduction treatments on a site scale.
78

Habitat relationships of seven breeding bird species in the Leon River Watershed investigated at local scales

Juarez Berrios, Edwin Alfredo 17 February 2005 (has links)
Over the past 100–150 years Texas rangelands have dramatically changed from native open savannahs to dense woodlands. On the Edwards plateau, a major management concern is the increasing encroachment of Ashe juniper (Juniperus ashei). Preceding an anticipated brush management program, I investigated the presence, co-occurrence, and habitat relationships of 7 breeding bird species in the Leon River Watershed in central Texas, USA: black-capped vireo (Vireo atricapillus), golden-cheeked warbler (Dendroica chrysoparia), northern bobwhite (Colinus virginianus), white-eyed vireo (Vireo griseus), Bell’s vireo (Vireo bellii), painted bunting (Passerina ciris), and brown-headed cowbird (Molothrus ater). Vegetation characteristics were compared between sites occupied by each species and unoccupied sites using univariate analysis. Models for predicting species site occupancy were developed (using logistic regression) based on habitat characteristics correlated with the presence of each species. Two species of special concern, the endangered black-capped vireo and golden-cheeked warbler occupied 5.6% of sites and 13.8% of sites respectively, while the brood parasite brown-headed cowbird was the most widespread, occupying 86.8% of sites. Species co-occurrence patterns revealed significant associations between the golden-cheeked warbler and each of 5 other species. For most species, variables included in habitat models could be explained by knowledge of species known habitat associations. For example, the black-capped vireo was positively associated with increasing low-growing (<1.5 m) hardwood cover and with Low Stony Hill ecological sites. The golden-cheeked warbler was positively associated with increasing density of larger juniper trees, increasing variability in vertical vegetation structure, and decreasing midstory canopy of deciduous nonoaks (e.g., cedar elm [Ulmus crasifolia]). It also preferred Low Stony Hill and Steep Adobe ecological sites. Site occupancy seemed to be driven by variables that describe overall vegetation structure. In particular, cover of low-growing non-juniper vegetation and juniper tree density appeared to be important in determining site occupancy for several species. Although the models constructed were not very robust, resource managers can still benefit from such models because they provide a preliminary examination of important controlling variables. Managing rangelands to maintain or restore a mosaic of juniper patches and open shrublands are likely to help meet the habitat requirements of these bird communities.
79

Kinetika i modelovanje ekstrakcije ulja iz bobica kleke (Juniperus communis L.) i semenki tikve (Cucurbita pepo L.) natkritičnim ugljendioksidom / Kinetics and mathematical modeling of juniper berry (Juniperus communis L.) essential oil and pumpkin seed (Cucurbita pepo L.) oil by supercritical carbondioxide

Nikolovski Branislava 18 December 2009 (has links)
<p>U radu su prikazani eksperimentalni rezultati natkritične ekstrakcije etarskog ulja bobica<br />kleke (<em>Juniperus communis</em> L.) i ulja iz semena uljane tikve golice (<em>Cucurbita pepo</em> L.). Ispitan je uticaj pritiska, temperature, stepena usitnjenosti čestica i protoka natkritičnog<br />ugljendioksida na promenu prinosa ulja sa vremenom. U cilju poređenja, usitnjeno seme uljane tikve ekstrahovano je i u ekstraktoru većih dimenzija, NOVA-SWISS, High<br />pressure extraction plant, kao i heksanom i petroletrom u ekstraktoru tipa Sokslet.<br />Praćena je i promena kvaliteta ekstrakata sa vremenom: u etarskom ulju kleke, GC-FID i GC-MS metodama, određen je relativni sadržaj 50 terpenskih jedinjenja i sve komponente ulja su svrstane u 5 osnovnih grupa (monoterpene, seskviterpene, oksidovane monoterpene, oksidovane seskviterpene i ostale komponente). U tikvinom ulju ekstrahovanom natkritičnim ugljendioksidom određen je masnokiselinski sastav GC-MS analizom, sadržaj tokoferola HPLC analizom, sterola i skvalena GC-MS metodom. Određeni su uslovi koji favorizuju ekstrakciju ispitanih jedinjenja za obe sirovine. Dat je dateljan prikaz matematičkih modela koji se koriste za opisivanje natkritične ekstrakcije etarskih ulja i masnih ulja, počev&scaron;i od najop&scaron;tijeg modela koji uključuje diferencijalne bilanse mase za rastvorak u masi natkritičnog fluida, u fluidu unutar pora čestica usitnjenog matrijala i u čvrstoj fazi, koji se uvođenjem određenih pretpostavki pojednostavljuje i svodi na modele koji su izabrani da budu ispitani u okviru ovoga rada. Ispitani su modeli kreireni po analogiji sa hlađenjem vrele kugle u masi fluida, tj. modeli tipa jedne sfere i to: Model jedne sfere-1 (MJS-1), koji pored uticaja koeficijenta efektivne difuzije ulja u materijalu na brzinu prenosa mase uzima u obzir uticaj koeficijenta prenosa mase kroz film natkritičnog fluida oko čestice, pri čemu je njegova vrednost procenjena preko postojećih korelacija; MJS-1 (2 par), u kome je spolja&scaron;nji koeficijent prenosa mase uzet kao drugi prilagodljiv parametar modela; MJS-2, gde je koeficijent efektivne difuzije jedini prilagođeni parametar, Model karakterističnog vremena i pro&scaron;ireni model klipnog toka koji je predložila Sovov&aacute;. Za modelovanje natkritične ekstrakcije ulja semena tikve kori&scaron;ćen je i kombinovani model Honga i sar. Softverskim paketima Mathcad 2001 Professional i Solver dodatka unutar Microsoft Excel 2003, određeni su parametri ispitanih modela u cilju najboljeg slaganja modela sa ekperimentalnim podacima. Za obe ispitane sirovine, među ispitanim modelima, izabrani su modeli koji najbolje opisuju njihovu ekstrakciju natkritičnim ugljendioksidom. Pro&scaron;ireni model klipnog toka koji je predložila Sovov&aacute; pokazao se podjednako dobrim za modelovanje natkritične ekstrakcije obe sirovine i ne&scaron;to bolji od ostalih primenjenih modela.</p> / <p>This study provides results of supercritical carbon dioxide (SCCO<sub>2</sub>) extraction of juniper berries (<em>Juniperus communis</em> L.) and pumpkin seeds (<em>Cucurbita pepo</em> L. convar.&nbsp;<em>citrullina</em>) in a laboratorysupercritical fluid extraction apparatus. The influence<br />of pressure, temperature, particle size and carbon dioxide flow on the extraction kinetics of pumpkin seed oil and juniper berry essential oil was studied. Ground pumpkin seeds were also extracted with supercritical carbon dioxide in NOVA-SWISS, High Pressure Extraction Plant, and with hexane and petroleum ether in a laboratory Soxhlet extractor. This work was also aimed to investigate the evolution of the composition of juniper fruit supercritical CO<sub>2</sub> extracts with time, at different extraction pressures and to emphasize the most favorable condition for the extraction of different terpene hydrocarbon groups, reporting the qualitative differences among extracts collected during successive extraction time periods. Juniper berry extracts were analyzed by capillary gas chromatography, using flame ionization (GC-FID) and mass spectrometric detection (GC-MS). More than 200 constituents were detected in the extracts and the contents of 50 compounds were reported in the work. Dependence of the percentage yields of monoterpene, sesquiterpene, oxygenated monoterpene and oxygenated sesquiterpene hydrocarbon groups on extraction time was investigated and conditions that favored the yielding of each terpene groups were emphasized. GC-MS analysis of FAME, prepared by transesterification of pumpkin seed oil with KOH in methanol, was performed. Fatty acid compositions of supercritical CO<sub>2</sub> pumpkin seed extract fractions collected in successive time intervals over the course of the extraction were determined. The same fractions were analyzed by high pressure liquid chromatography (HPLC), using diode-array detector (DAD) in order to determine a- and g-tocopherol contents. Sterol and squalene contents were determined by GC-MS analysis, as well. Conditions that favored the yielding of tocopherols, squalene and sterols were emphasized. A general mass transfer model and its simlifications were analysed. Extraction curves were evaluated by &ldquo;hot sphere&rdquo; mathematical models SSM-1 (Single Sphere Model 1 &ndash; in which the external mass transfer coefficient also influences the extraction profile and film mass transfer coefficients were estimated by the correlations), SSM-1 (2 par) (film mass transfer coefficient is used as the second adjustable parameter), SSM-2 (only effective diffusivity influence is considered), Characteristic time model and by the extended Lack&rsquo;s plug-flow model given by Sovov&aacute;. A combined model of Hong et al. was also fitted to the experimental data for pumpkin seed oil SCCO<sub>2&nbsp;</sub>extractions. Relative merits of the models are demonstrated. Good agreement between the extended Lack&rsquo;s plug-flow model and the experimental measurements was obtained.</p>
80

Influence of Soil Water Repellency on Post-fire Revegetation Success and Management Techniques to Improve Establishment of Desired Species

Madsen, Matthew D. 17 December 2009 (has links) (PDF)
The influence of soil water repellency (WR) on vegetation recovery after a fire is poorly understood. This dissertation presents strategies to broaden opportunities for enhanced post-fire rangeland restoration and monitoring of burned piñon and juniper (P-J) woodlands by: 1) mapping the extent and severity of critical and subcritical WR, 2) determining the influence of WR on soil ecohydrologic properties and revegetation success, and 3) evaluating the suitability of a wetting agent composed of alkylpolyglycoside-ethylene oxide/propylene oxide block copolymers as a post-fire restoration tool for ameliorating the effects of soil WR and increasing seedling establishment. Results indicate that: • Post-fire patterns of soil WR were highly correlated to pre-fire P-J woodland canopy structure. Critical soil WR levels occurred under burned tree canopies while sub-critical WR extended out to approximately two times the canopy radius. At sites where critical soil WR was present, infiltration rate, soil moisture, and vegetation cover were significantly less than at non-hydrophobic sites. These parameters were also reduced in soils with subcritical WR relative to non-hydrophobic soils (albeit to a lesser extent). Aerial photography coupled with feature extraction software and geographic information systems (GIS) proved to be an effective tool for mapping P-J cover and density, and for scaling-up field surveys of soil WR to the fire boundary scale. • Soil WR impairs seed germination and seedling establishment by decreasing soil moisture availability by reducing infiltration, decreasing soil moisture storage capacity, and disconnecting soil surface layers from underlying moisture reserves. Consequently, soil WR appears to be acting as a temporal ecological threshold by impairing establishment of desired species within the first few years after a fire. • Wetting agents can significantly improve ecohydrologic properties required for plant growth by overcoming soil WR; thus, increasing the amount and duration of available water for seed germination and seedling establishment. Success of this technology appears to be the result of the wetting agent increasing soil moisture amount and availability by 1) improving soil infiltration and water holding capacity; and 2) allowing seedling roots to connect to underling soil moisture reserves.

Page generated in 0.0596 seconds