• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ablation des matériaux carbonés : lien entre la nanotexturation et la réactivité / Ablation of carbon materials : relation between nanotexture and reactivity

Delehouzé, Arnaud 06 December 2012 (has links)
La problématique énoncée par l’utilisation de matériaux composites C/C denses implique la connaissance et la maîtrise des processus de dégradation auxquels ils sont soumis. L’utilisation de moyens de caractérisation in-situ de ces voies de dégradation constitue alors un atout considérable pour leur anticipation. Ainsi, l’utilisation de la MEBE en Température associée à une caractérisation cristallographique par MET et une confrontation ex-situ par Analyse thermogravimétrique a abouti à l’obtention de lois cinétiques caractérisant la propagation de l’oxydation dans toutes les directions de l’espace. A la suite de cette étape expérimentale, une approche numérique basée sur l’utilisation d’algorithmes de Monte-Carlo Cinétique, a alors été mise en place pour modéliser ces observations tant sur le plan atomique avec la modélisation de la loi cinétique d’oxydation linéique, que meso et macroscopique par la simulation de la loi cinétique de perte de masse dans le cas particulier du HOPG. / The problem stated by the use of composites C / C dense implies knowledge and control of degradation processes to which they are subjected. The use of in-situ characterization of these means of degradation pathways then is a considerable asset for their advance. Thus, the use of ESEM in temperature associated with a crystallographic characterization by TEM and ex situ confrontation by thermogravimetric analysis resulted in obtaining kinetic laws characterizing the propagation of oxidation in all directions. Following this experimental stage, a numerical approach based on the use of algorithms Kinetic Monte-Carlo, was then introduced to model these observations both at the atomic level with the modeling of the oxidation kinetics law linear, as meso-and macro-simulation by the kinetic law of mass loss in the case of HOPG.
2

Unravelling nanoscale molecular processes in organic thin films

Bommel, Sebastian 08 September 2015 (has links)
Dünne Filme aus konjugierten Molekülen werden vermehrt in der organischen Optoelektronik, Bio-Sensorik und Oberflächenmodifikationen eingesetzt. Jedoch steckt das nanoskopische Verständnis von elementaren Prozessen bzgl. des molekularen Wachstums, der Film-Stabilität und thermisch-mechanischer Eigenschaften noch in den Kinderschuhen. Im ersten Teil dieser Arbeit nutzen wir Echtzeit in situ spekulare und diffuse Röntgenstreuung in Kombination mit Kinetik-Monte-Carlo Simulationen, um die Nukleation und das Multilagen-Wachstum von C60 zu studieren. Wir quantifizieren einen konsistenten Satz von Energieparametern, die die Oberflächenprozesse während des Wachstums beschreiben: eine effektive Ehrlich-Schwoebel Barriere von EES = 110 meV, eine Oberflächendiffusions-Barriere von ED = 540 meV und die Bindungsenergie von EB = 130 meV. Durch die Analyse der Teilchendynamiken finden wir, dass die laterale Diffusion ähnlich derer von Kolloiden ist, jedoch weist die Stufenkanten-Diffusion eine atom-ähnlichen Schwoebel-Barriere auf. Außerdem haben wir für die erste Monolage ein thermisch-aktiviertes Dewetting nach dem Wachstum von C60 auf Mica mit einer effektiven Aktivierungsbarriere von (0.33 ± 0.14) eV für die Aufwärts-Diffusion beobachtet. Im zweiten Teil der Arbeit untersuchen wir die thermomechanischen Eigenschaften der supra-molekularen Anordnung von dem organischen Halbleiter PTCDI-C8. Temperaturabhängige GIXD-Experimente decken einen außergewöhnlich großen positiven und negativen thermischen Expansionskoeffizienten der Kristallstruktur auf. Die Moleküle vollführen kooperative rotierende Bewegungen als Reaktion auf die Temperaturänderung, die zu dieser anomalen thermischen Expansion führen. Unsere Beschreibung der Bewegungen einzelner adsorbierter Moleküle während des Wachstums und der kooperativen Bewegungen einzelner Moleküle in supra-molekularen Ensembles auf der molekularen Skala wird die weitere Arbeit auf dem Weg zu funktionalen molekularen dünnen Filmen beleben. / Thin films of conjugated molecules are increasingly used in organic optoelectronics, biosensing and surface modification. However, nanoscopic understanding of elementary processes regarding the molecular film growth, the stability of these films and regarding the thermal and mechanical properties of supra-molecular assemblies are in its infancy. In the first part of this thesis we use real-time in situ specular and diffuse X-ray scattering in combination with kinetic Monte Carlo simulations to study C60 nucleation and multilayer growth. We quantify a consistent set of energy parameters, which describe the surface processes during growth, yielding an effective Ehrlich-Schwoebel barrier of EES = 110 meV, a surface diffusion barrier of ED = 540 meV and a binding energy of EB = 130 meV. Analysing the particle-resolved dynamics, we find that the lateral diffusion is similar to colloids, but step-edge crossing is characterized by an atom-like Schwoebel barrier. Furthermore, a thermally-activated post-growth dewetting for C60 on mica has been observed for the first monolayer with an effective activation barrier for upward interlayer transport of (0.33 ± 0.14) eV. In the second part we investigate the thermomechanical properties of the supra-molecular assembly of the organic semiconductor PTCDI-C8. Temperature-dependent Grazing Incidence X-ray Diffraction (GIXD) experiments reveal extraordinary large positive and, surprisingly, negative thermal expansion coefficients of the thin film crystal structure. The molecules perform temperature-controlled cooperative rotational motions leading to the change of the molecular crystal structure at different temperatures. We hope that our molecular scale picture of the movement of single ad-molecules during growth and the cooperative motions of single molecules in supra-molecular ensembles will stimulate further work towards the optimized, rational design of functional molecular thin films and nanomaterials.

Page generated in 0.0658 seconds