• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiscale modeling of structure formation and dynamic properties of organic molecules in hybrid inorganic/organic semiconductors

Pałczynski, Karol 29 July 2016 (has links)
Die optoelektronischen Eigenschaften von inorganischen/organischen Hybridmaterialien (HIOS) sind besonders von der Kristallstruktur und der Ausrichtung der organischen Moleküle relativ zur inorganischen Oberfläche abhängig. Beides hängt von den kollektiven Wechselwirkungen der Materialien und von Transportprozessen wie etwa der Diffusion während der Deposition der organischen Materialien auf inorganischen Oberflächen ab. Durch die Komplexität solcher System sind jedoch viele Fragen im Bezug auf die gezielte Herstellung und Vorhersage von HIOS-Strukturen offen. Die Ziele dieser Arbeit sind daher (1) die theoretische Reproduktion der experimentell bekannten Einkristall-Struktur des weit verbreiteten organischen Moleküls para-Sexiphenyl (p-6P) und (2) die Untersuchung der Selbstdiffusion eines einzelnen p-6P auf einer inorganischen Zinkoxid (ZnO) Oberfläche. Die jeweiligen Systeme werden mittels klassischer atomistischer Molekulardynamik Simulationen und mit Methoden der klassischen Diffusionstheorie untersucht. Die Arbeit demonstriert, dass ein Modell basierend auf einem klassischen Kraftfeld die internen geometrischen und energetischen Eigenschaften eines realen p-6P Moleküls reproduziert. Wir simulieren die Selbstanordnung von p-6P zu Kristallen mit der experimentellen Einkristall-Struktur des p-6P und reproduzieren das reale Phasenverhalten des p-6P Kristalls. Wir untersuchen den Zusammenhang zwischen der Oberflächendiffusion eines p-6P und der elektrostatischen Kopplung zur ZnO (10-10)-Oberfläche. Wir entwickeln Strategien zur Berechnung von freie-Energie Landschaften, Diffusionskoeffizienten und Übergangsraten über Stufenkanten. Im Ergebnis hängen die Übergangsraten exponentiell von der Temperatur, der elektrostatischen Kopplung und der Höhe der Stufenkanten ab. Wir entdecken zudem zwei unterschiedliche Übergangspfade des p-6P über Stufenkanten, die von der Temperatur des Systems und von der elektrostatischen Kopplung abhängen. / The optoelectronic properties of hybrid inorganic/organic semiconductors strongly depend on the crystal structure and alignment of the molecules relative to the surface. Structure and alignment, in turn, depend on the surface-molecule and molecule-molecule interactions as well as transport processes such as diffusion during deposition of the organic molecules on an inorganic surface. However, due to their high complexity, fundamental questions pertaining to the design and prediction of HIOS structure are still unanswered. The aims of this thesis are therefore (1) to theoretically reproduce experimental bulk crystal structures of the widely used organic para-sexiphenyl molecule (p-6P) and (2) to investigate the self-diffusion of a single p-6P deposited on an inorganic Zincoxide (ZnO) surface. A multi-scale strategy is used, combining quantum density functional theory (DFT), all-atom molecular dynamics simulations, and classical diffusion theory. The thesis demonstrates that a classical force field model yields self-assembled bulk crystal structures and reproduces the real solid to liquid crystal phase behavior. The internal geometries and energies of the p-6P molecule and the structure of the p-6P bulk crystal are reproduced, all consistent with DFT and experiments. We investigate how the diffusion of the p-6P relates to the surface structure and the electrostatic coupling between the molecule and the ZnO (10-10) surface. We investigate by means of an advanced sampling strategy, free energy landscapes, diffusion coefficients and crossing rates over surface-step-edges. We find that the reciprocal values of the rates depend exponentially on the system temperature, the amplitude of the surface charges and the step-edge height, as well as linearly on the distance between equally high steps. We also discover two different crossing pathways for the molecule moving over the step, which simultaneously depend on the system temperature and the electrostatic coupling.
2

Wachstum metallischer Nanoclustern auf Polymeroberflächen / Growth of Metallic Nanoclusters on Polymer - Surfaces

Faupel, Jörg 14 March 2005 (has links)
No description available.
3

Computational study of structure formation and dynamic properties of organic molecules in hybrid inorganic/organic interfaces

Miletic, Mila 18 October 2022 (has links)
Hybridstrukturen aus organischen und anorganischen Halbleitern (HIOS) vereinen die besten Eigenschaften beider Materialklassen zu Konjugaten mit großem Anwendungspotential. Ihre engen Struktur-Eigenschafts-Beziehungen, eröffnen viele interessante wissenschaftliche Herausforderungen. Um z.B. ihre optoelektronischen Eigenschaften vorherzusagen, müssen die früher Stadien des Dünnschichtwachstums erforscht werden. Das erste Ziel dieser Arbeit ist es, den Einfluss der Entropie auf die Oberflächendiffusion von kurzen Polyphenyl Molekülen auf amorphem Siliziumdioxid, a-SiO2 zu untersuchen. Das zweite Ziel ist es, den Einfluss partieller Fluorierung auf para-Sexiphenyls (p-6P) zu untersuchen. Des Weiteren untersuchen wir Selbstdiffusion von p-6P auf einer Zinkoxid (ZnO) Oberfläche und Selbstorganisation bzw. Schichtwachstum auf a-SiO2. Hierfür verwenden wir klassische atomistische Molekular- und Langevin-Dynamik-Simulationen, kombiniert mit klassischer Diffusionstheorie. In Bezug auf das erste Ziel quantifizieren wir die entropischen Beiträge zu den Freie-Energie-Barrieren für die Oberflächendiffusion von Polyphenylen unterschiedlicher Länge und zeigen, dass die Entropie zum dominierenden Teil der freien Energie für längere Moleküle wird. Zweitens demonstrieren wir, dass die Erhöhung der Anzahl fluorierter Gruppen im p-6P die Diffusion in der apolaren Richtung der ZnO-Oberfläche verringert, aber die Diffusion in der polaren Richtung erhöht. Drittens untersuchen wir den Einfluss der Fluorierung auf die Nukleation und das Wachstum von p-6P auf a-SiO2 mit einem Simulationsmodell, das experimentelle Gasphasenepitaxie nachahmt. Wir reproduzieren korrekte Einheitszellen bei Raumtemperatur und zeigen, dass die Erhöhung der Anzahl fluorierter Gruppen zu einem Schicht-für-Schicht-Wachstum auf der Oberfläche führt. Diese Arbeit ebnet den Weg für zukünftige Simulationen von Dünnschichtwachstum kleiner organischer Moleküle auf anorganischen Oberflächen. / Hybrid structures of organic molecules and inorganic semiconductors (HIOS) combine favorable properties of each material into conjugates with great application potential. The optoelectronic properties of hybrid materials depend on the structure of individual molecules and their alignment relative to the inorganic surface. It is an interesting scientific challenge to predict the optoelectronic properties of HIOS based on studying the early stages of thin film growth and interface formation. The aim of this thesis is to investigate the effect of entropy in surface diffusion of short polyphenyl molecules on an amorphous silicon dioxide, a-SiO2. Second objective is to study the influence of partial fluorination of the organic para-sexiphenyl molecule (p-6P) on self-diffusion on an inorganic zinc oxide (ZnO) surface and on self-assembly and growth on the a-SiO2. For this we employ all-atom molecular dynamics and Langevin dynamics simulations, combined with classical diffusion theory. In respect to the first aim, we quantify entropic contributions to the free energy barrier of surface diffusion for short oligophenyls of varying length and demonstrate that entropy becomes even the dominant part of the free energy for longer molecules. For the second aim, we demonstrate that the increase in the number of fluorinated groups inside of the p-6P decreases the diffusivity in the apolar direction of the ZnO surface but increases the diffusivity in the polar direction. Thirdly, we study the influence of fluorination on nucleation and growth on a-SiO2 with a simulation model that mimics experimental deposition from the vapor. We reproduce the structures with correct room-temperature unit-cell parameters and demonstrate that the increase in the number of fluorinated groups leads to a layer-by-layer growth on the surface. This work can stimulate ideas for future simulations of nucleation and growth of small organic molecules with high tuning potential, on inorganic surfaces.
4

Diffusionsuntersuchungen an (polymer-modifizierten) Mikroemulsionen mittels Feldgradientenimpuls-NMR-Spektroskopie / Diffusion studies in (polymer-modified) microemulsions using pulsed field gradient NMR spectroscopy

Wolf, Gunter January 2005 (has links)
Aufgrund des großen Verhältnisses von Oberfläche zu Volumen zeigen Nanopartikel interessante, größenabhängige Eigenschaften, die man im ausgedehnten Festkörper nicht beobachtet. Sie sind daher von großem wissenschaftlichem und technologischem Interesse. Die Herstellung kleinster Partikel ist aus diesem Grund überaus wünschenswert. Dieses Ziel kann mit Hilfe von Mikroemulsionen als Templatphasen bei der Herstellung von Nanopartikeln erreicht werden. Mikroemulsionen sind thermodynamisch stabile, transparente und isotrope Mischungen von Wasser und Öl, die durch einen Emulgator stabilisiert sind. Sie können eine Vielzahl verschiedener Mikrostrukturen bilden. Die Kenntnis der einer Mikroemulsion zugrunde liegenden Struktur und Dynamik ist daher von außerordentlicher Bedeutung, um ein gewähltes System potentiell als Templatphase zur Nanopartikelherstellung einsetzen zu können.<br><br> In der vorliegenden Arbeit wurden komplexe Mehrkomponentensysteme auf der Basis einer natürlich vorkommenden Sojabohnenlecithin-Mischung, eines gereinigten Lecithins und eines Sulfobetains als Emulgatoren mit Hilfe der diffusionsgewichteten 1H-NMR-Spektroskopie unter Verwendung gepulster Feldgradienten (PFG) in Abhängigkeit des Zusatzes des Polykations Poly-(diallyl-dimethyl-ammoniumchlorid) (PDADMAC) untersucht. Der zentrale Gegenstand dieser Untersuchungen war die strukturelle und dynamische Charakterisierung der verwendeten Mikroemulsionen hinsichtlich ihrer potentiellen Anwendbarkeit als Templatphasen für die Herstellung möglichst kleiner Nanopartikel.<br><br> Die konzentrations- und zeit-abhängige NMR-Diffusionsmessung stellte sich dabei als hervorragend geeignete und genaue Methode zur Untersuchung der Mikrostruktur und Dynamik in den vorliegenden Systemen heraus. Die beobachtete geschlossene Wasser-in-Öl- (W/O-) Mikrostruktur der Mikroemulsionen zeigt deutlich deren potentielle Anwendbarkeit in der Nanopartikelsynthese. Das Gesamtdiffusionsverhalten des Tensides wird durch variierende Anteile aus der Verschiebung gesamter Aggregate, der Monomerdiffusion im Medium bzw. der medium-vermittelten Oberflächendiffusion bestimmt. Dies resultierte in einigen Fällen in einer anormalen Diffusionscharakteristik. In allen Systemen liegen hydrodynamische und direkte Wechselwirkungen zwischen den Tensidaggregaten vor.<br><br> Der Zusatz von PDADMAC zu den Mikroemulsionen resultiert in einer Stabilisierung der flüssigen Grenzfläche der Tensidaggregate aufgrund der Adsorption des Polykations auf den entgegengesetzt geladenen Tensidfilm und kann potentiell zu Nanopartikeln mit kleineren Dimensionen und schmaleren Größenverteilungen führen. / Owing to their large surface-to-volume ratio nanoparticles show interesting size-dependent properties that are not observable in bulk materials. Thus, they are of great scientific and technological interest. Thereby, the highly desirable preparation of as small particles as possible might be easily achieved using microemulsions as template phases. Microemulsions are thermodynamically stable, transparent and isotropic mixtures of water and oil stabilized by an emulsifying agent. However, microemulsions may form a great variety of different microstructures. Thus, it is of utmost importance to know the underlying microstructure and microdynamics of a chosen microemulsion system in order to use it as a template phase for nanoparticle formation.<br><br> In the present study complex multi-component microemulsion systems based on a naturally occurring soybean lecithin mixture, purified lecithin and sulfobetaine as emulsifiers were investigated by diffusion-weighted pulsed field gradient (PFG) 1H NMR spectroscopy in the presence and absence of the polycation poly-(diallyldimethylammonium chloride) (PDADMAC). The central topic of this study was to structurally and dynamically characterize the present microemulsions with respect to their potential use in nanoparticle formation.<br><br> The concentration- and time-dependent NMR diffusion measurements turned out to be a suitable and accurate tool to investigate the microstructure and microdynamics of the systems under investigation. They reveal closed water-in-oil (W/O) microemulsion microstructures which prove the potential suitability of the respective systems as template phases for the preparation of nano-sized particles. The overall diffusion behavior of surfactants were found to be governed by varying contributions from displacements of entire aggregates, monomer diffusion in the medium and bulk-mediated surface diffusion, respectively. In some cases this led to a marked anomalous diffusion characteristics. In all systems interactions between aggregates are dominated by hydrodynamic and direct forces.<br><br> The addition of PDADMAC to the microemulsion systems results in a stabilization of the liquid interface of surfactant aggregates due to the adsorption of the polycation at the oppositely charged surfactant film and may potentially lead to nanoparticles of smaller dimensions and narrower size distributions.
5

Unravelling nanoscale molecular processes in organic thin films

Bommel, Sebastian 08 September 2015 (has links)
Dünne Filme aus konjugierten Molekülen werden vermehrt in der organischen Optoelektronik, Bio-Sensorik und Oberflächenmodifikationen eingesetzt. Jedoch steckt das nanoskopische Verständnis von elementaren Prozessen bzgl. des molekularen Wachstums, der Film-Stabilität und thermisch-mechanischer Eigenschaften noch in den Kinderschuhen. Im ersten Teil dieser Arbeit nutzen wir Echtzeit in situ spekulare und diffuse Röntgenstreuung in Kombination mit Kinetik-Monte-Carlo Simulationen, um die Nukleation und das Multilagen-Wachstum von C60 zu studieren. Wir quantifizieren einen konsistenten Satz von Energieparametern, die die Oberflächenprozesse während des Wachstums beschreiben: eine effektive Ehrlich-Schwoebel Barriere von EES = 110 meV, eine Oberflächendiffusions-Barriere von ED = 540 meV und die Bindungsenergie von EB = 130 meV. Durch die Analyse der Teilchendynamiken finden wir, dass die laterale Diffusion ähnlich derer von Kolloiden ist, jedoch weist die Stufenkanten-Diffusion eine atom-ähnlichen Schwoebel-Barriere auf. Außerdem haben wir für die erste Monolage ein thermisch-aktiviertes Dewetting nach dem Wachstum von C60 auf Mica mit einer effektiven Aktivierungsbarriere von (0.33 ± 0.14) eV für die Aufwärts-Diffusion beobachtet. Im zweiten Teil der Arbeit untersuchen wir die thermomechanischen Eigenschaften der supra-molekularen Anordnung von dem organischen Halbleiter PTCDI-C8. Temperaturabhängige GIXD-Experimente decken einen außergewöhnlich großen positiven und negativen thermischen Expansionskoeffizienten der Kristallstruktur auf. Die Moleküle vollführen kooperative rotierende Bewegungen als Reaktion auf die Temperaturänderung, die zu dieser anomalen thermischen Expansion führen. Unsere Beschreibung der Bewegungen einzelner adsorbierter Moleküle während des Wachstums und der kooperativen Bewegungen einzelner Moleküle in supra-molekularen Ensembles auf der molekularen Skala wird die weitere Arbeit auf dem Weg zu funktionalen molekularen dünnen Filmen beleben. / Thin films of conjugated molecules are increasingly used in organic optoelectronics, biosensing and surface modification. However, nanoscopic understanding of elementary processes regarding the molecular film growth, the stability of these films and regarding the thermal and mechanical properties of supra-molecular assemblies are in its infancy. In the first part of this thesis we use real-time in situ specular and diffuse X-ray scattering in combination with kinetic Monte Carlo simulations to study C60 nucleation and multilayer growth. We quantify a consistent set of energy parameters, which describe the surface processes during growth, yielding an effective Ehrlich-Schwoebel barrier of EES = 110 meV, a surface diffusion barrier of ED = 540 meV and a binding energy of EB = 130 meV. Analysing the particle-resolved dynamics, we find that the lateral diffusion is similar to colloids, but step-edge crossing is characterized by an atom-like Schwoebel barrier. Furthermore, a thermally-activated post-growth dewetting for C60 on mica has been observed for the first monolayer with an effective activation barrier for upward interlayer transport of (0.33 ± 0.14) eV. In the second part we investigate the thermomechanical properties of the supra-molecular assembly of the organic semiconductor PTCDI-C8. Temperature-dependent Grazing Incidence X-ray Diffraction (GIXD) experiments reveal extraordinary large positive and, surprisingly, negative thermal expansion coefficients of the thin film crystal structure. The molecules perform temperature-controlled cooperative rotational motions leading to the change of the molecular crystal structure at different temperatures. We hope that our molecular scale picture of the movement of single ad-molecules during growth and the cooperative motions of single molecules in supra-molecular ensembles will stimulate further work towards the optimized, rational design of functional molecular thin films and nanomaterials.
6

High-Speed Scanning Tunneling Microscopy on Thin Oxide Film Systems

Gura, Leonard Gordian 13 April 2023 (has links)
Dünne Silizium- und Germaniumdioxidfilme auf Ru(0001)-Kristallen werden hinsichtlich dynamischer Prozesse untersucht. Zwischen Oxidfilm und Substrat befinden sich Sauerstoffatome, die eine ent-scheidende Rolle in diesen Systemen spielen. Zunächst werden diese Sauerstofflagen auf Ru(0001) mittels Hochgeschwindigkeits-Rastertunnelmikroskopie (STM) analysiert. Daraufhin wird die GeO2-Monolage auf Ru(0001) bei hohen Bildraten mit einer selbstentwickelten halbautomatischen Netz-werkdetektion untersucht. Schließlich wird die SiO2-Bilage auf Ru(0001) mit konventionellen sowie mit schnellen STM-Messungen bei Raumtemperatur und bei 600 K abgebildet. Um schnelle Messungen bei hohen Temperaturen zu realisieren, wird ein Hochgeschwindigkeits-STM konstruiert, welches bei unterschiedlichen Temperaturen betrieben werden kann. Unkon-ventionelle Spiralgeometrien ermöglichen verzerrungsfreie Bilder in weniger als 10 ms aufzunehmen. Die adsorbierten Sauerstofflagen werden erstmals bei hohen Bildraten untersucht. Die experimen-tellen Ergebnisse werden durch extern durchgeführte Dichtefunktionaltheorie-Berechnungen ergänzt. In den auf Ru(0001) bei Raumtemperatur stabilen Sauerstofflagen O(2×2), O(2×1) und 3O(2×2) werden dynamische Prozesse beobachtet. Die Besetzung des Zwischenzustandes entlang des Diffusionspfades und schnelle "Umklapp"-Prozesse eindimensionaler Linien werden auf atomarer Ebene aufgelöst. Komplexe Domänengrenzen in der GeO2-Monolage auf Ru(0001) werden mit Hochgeschwindigkeits-STM abgebildet. Die Messungen an der SiO2-Bilage auf Ru(0001) zeigen dynamische Änderungen des Abbildungskontrasts, die mit den mobilen Sauertsoffatomen an der Grenzfläche zusammenhängen können. Messungen bei hohen Temperaturen zeigen dynamische Kontraständerungen von mesoskopischen Strukturen. Diese Messungen stellen die ersten schnellen Hochtemperatur-STM-Aufnahmen des Siliziumdioxidfilms dar und bilden die Grundlage für künftige Studien zu dynamischen Veränderungen in dünnen Oxidschichtsystemen. / Dynamics related to thin silicon- and germanium dioxide films that are grown on Ru(0001) crystals are investigated. Between the film and the metal support oxygen species are present that play a crucial role for these film systems. First, these oxygen adlayers on Ru(0001) are analyzed by high-speed scan-ning tunneling microscopy (STM) with the focus on dynamic processes. In a next step, the monolayer of germanium dioxide (germania) supported on Ru(0001) is studied at elevated frame rates and with a self-designed semi-automated network detection. Finally, the bilayer of silicon dioxide (silica) on Ru(0001) is studied by conventional and by high-speed STM both at room temperature and at 600 K. To realize fast STM measurements at elevated temperatures, a high-speed STM is designed that can operate at variable temperatures. Images are acquired in less than 10 ms with unconventional spiral scan patterns. The dynamics in oxygen adlayers are investigated for the first time at elevated frame rates. Experimental results are supported by density functional theory (DFT) calculations performed externally. Dynamic events are observed in the oxygen adlayers that are stable on Ru(0001) at room temperature, namely O(2×2), O(2×1), and 3O(2×2). The occupation of an intermediate state along the oxygen diffusion pathway and fast "flipping" events of atomic one-dimensional stripe patterns are observed. On the germania monolayer on Ru(0001), complex domain boundary structures are resolved with high-speed STM. In high-speed scans on the silica bilayer on Ru(0001), dynamic changes of the imaging contrast are observed that may relate to the mobile species in the oxygen interfacial layer. Measurements at elevated temperature reveal dynamic contrast changes of mesoscopic features. These measurements constitute the first high-speed STM scans on the silica film at elevated temperatures and form the basis for future studies with the focus on dynamic processes in thin oxide film systems.

Page generated in 0.0857 seconds