• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 12
  • 3
  • Tagged with
  • 78
  • 73
  • 56
  • 41
  • 39
  • 36
  • 31
  • 31
  • 31
  • 25
  • 17
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Epitaxial nanolayers of large organic molecules / Epitaktische Nanoschichten großer organischer Moleküle: Quaterrylene auf organischen und anorganischen Substraten / Quaterrylenes on organic and inorganic substrates

Franke, Robert 12 July 2007 (has links) (PDF)
In der vorliegenden Arbeit wurde das hochgeordnete Wachstum von großen organischen Molekülen auf kristallinen Substraten mit Hilfe der Quaterrylenderivate QT, QTCDI und QTCMI untersucht. Um derartige Schichten herstellen und charakterisieren zu können, wurde eine Organische Molekularstrahlepitaxy (OMBE)-Anlage aufgebaut. Allerdings stellt OMBE bisher nur ein Standardverfahren für die Präparation hochgeordneter Schichten bestehend aus kleineren Molekülen dar. Im Zusammenhang mit größeren Molekülen ergibt sich die Frage, ob auf Grund der höheren Sublimationstemperatur diese unzersetzt aufgedampft werden können. Optische Spektroskopieexperimente haben gezeigt, daß dies im Fall von QT möglich ist. Andererseits beginnt die Zersetzung von QTCDI bereits unterhalb seiner Sublimationstemperatur, wobei als eines der Produkte QTCMI entsteht. Ein wesentliches Anliegen dieser Arbeit bestand darin, die Frage zu klären, inwieweit diese großen Aromate epitaktisch auf anorganischen als auch organischen Substraten aufwachsen. Organisch-anorganische Schichtsysteme wurden durch Aufdampfen der Quaterrylenderivate auf einkristalline, rekonstruierte Goldoberflächen erzeugt und anschließend mit LEED und STM charakterisiert. Trotz der eingeschränkten thermischen Stabilität von QTCDI konnten sowohl hochgeordnete QT als auch QTCDI Monolagen auf Au(111) hergestellt werden, die jeweils aus flachliegenden Molekülen bestehen. Im Falle von QTCDI konnte dieses Resultat durch eine Optimierung der Probenherstellung erreicht werden. Im Unterschied zur Anordnung der QT Moleküle in Reihen, bilden die QTCDI Moleküle eine dazu deutlich verschiedene brickwall Struktur, die durch die Bildung von Wasserstoffbrückenbindungen zwischen den Randgruppen der QTCDI Moleküle erklärt werden kann. In ähnlicher Weise zeigt sich der Einfluß der Substituenten auf die Anordnung der Moleküle in der Schicht an den gefunden QTCMI Strukturen. Im Unterschied zu QTCDI Monolagen auf Au(111), konnten keine reinen QTCMI Proben erzeugt werden. Die Ursache dafür ist, daß QTCMI zwar in der QTCDI Knudsenzelle angereichert werden kann, aber beide Moleküle ähnliche Verdampfungstemperaturen besitzen. Selbst die Präparation einer reinen QTCMI Probe nach vollständiger Umsetzung aller QTCDI Moleküle in der Knudsenzelle erscheint schwierig, da bei diesen Temperaturen auch die Zersetzung der QTCMI Moleküle stattfindet. Des weiteren wurden QT Monolagen auf Au(100) Substraten hergestellt. Die QT Moleküle besitzen auf dieser Oberfläche dieselbe Anordnung wie auf Au(111). Auf beiden Oberflächen wurden nur bestimmte Domänenwinkel beobachtet, die die Ausrichtung der Moleküldomänen im Bezug zum Substrat beschreiben. Da die rekonstruierten Au(100) Oberfläche typischerweise nur eine Phase je Terrasse ausbildet, entsteht eine ausgedehnte QT Domäne bereits durch eine einzige Adsorbatstruktur. Andererseits erfordert das homogene Wachstum einer ausgedehnten QT Domäne auf verschiedenen Rekonstruktionsdomänen der Au(111) Oberfläche die Existenz der drei beobachteten Adsorbatstrukturen, die sich durch unterschiedliche Domänenwinkel auszeichnen. Weiterhin wurden Anzeichen dafür gefunden, daß die rekonstruierten Au(111) und Au(100) Oberflächen durch die Adsorption von QT Molekülen verändert werden. Während dieser Effekt im Fall der Au(111) Oberfläche auch bei anderen organischen Molekülen beobachtet wurde, ist unseres Wissens nach in der Literatur eine Veränderung der Au(100) Rekonstruktion in Folge des Aufdampfens einer organischen Molekülschicht bisher nicht beschrieben worden. Darüber hinaus können alle beobachteten Adsorbatstrukturen der Quaterrylenderivate auf Au(111) und Au(100) im Rahmen des point-on-line Modells erklärt werden. Das Wachstum der zweiten Monolage QT auf Au(111) wurde als Beispiel für organisch-organische Homoepitaxy untersucht. Die Moleküle der zweiten QT Monolage bilden wiederum Reihen, die entlang der QT Reihen der ersten Monolage wachsen. Als unmittelbare Folge existiert nur eine mögliche Domänenorientierung im Bezug zur ersten Monolage QT. Im Unterschied zu den ausschließlich flachliegenden Molekülen der ersten Monolage QT wurden in der zweiten Monolage alternierend stehende und liegende Moleküle beobachtet. Die resultierende Struktur ähnelt dabei der QT Kristallstruktur. Diese Resultate zeigen, daß die Au(111) Oberfläche einen vergleichsweise starken Einfluß auf die Struktur der ersten QT Monolage hat, während sie sich deutlich weniger stark auf die Struktur der zweiten QT Monolage auswirkt. Einen weiteren Aspekt der vorliegenden Arbeit stellen organisch-organische Heterostrukturen bestehend aus QT-HBC Schichten auf Au(111) dar. Im Zusammenhang mit der Untersuchung dieser Schichten sollte geklärt werden, ob der kürzlich gefundene Epitaxytyp line-on-line das Wachstum organisch-organischer Heterostrukturen generell beschreiben kann. Im Gegensatz zu typischen STM Bildern von organisch-organischen Heterostrukturen aus der Literatur, konnten hier Bilder aufgezeichnet werden, in der beide Molekülsorten deutlich voneinander unterschieden werden können. Dabei wurde eine QT/HBC Heterostruktur gefunden, bei der flachliegende QT Moleküle Reihen bilden. Im Unterschied zu QT auf Au(111) sind diese Reihen nicht dicht aneinander gepackt. Diese Beobachtung deutet darauf hin, daß die QT Struktur durch ein energetisch günstiges Packen der QT Moleküle auf den HBC Molekülen bestimmt wird. Darüber hinaus wurden zwei weitere Adsorbatstrukturen mit deutlich verschiedenen Gitterparametern gefunden. Hochaufgelöste STM Bilder legen nahe, daß diese beiden Strukturen alternierend aus stehenden und liegenden Moleküle bestehen. Die Experimente liefern Anzeichen dafür, daß die jeweilige Anordnung der QT Moleküle in der Schicht von der Dicke der darunterliegen HBC Schicht bestimmt wird. Demnach liegen die QT Moleküle auf einer Monolage HBC infolge der stärkeren Wechselwirkung zur Au(111) Oberfläche flach, während die bei dickeren HBC Schichten schwächere Wechselwirkung mit dem Gold eine Struktur aus stehenden und liegenden Molekülen ähnlich der Kristallstruktur zur Folge hat.
2

Wood cell wall modification with hydrophobic molecules

Ermeydan, Mahmut Ali January 2014 (has links)
Wood is used for many applications because of its excellent mechanical properties, relative abundance and as it is a renewable resource. However, its wider utilization as an engineering material is limited because it swells and shrinks upon moisture changes and is susceptible to degradation by microorganisms and/or insects. Chemical modifications of wood have been shown to improve dimensional stability, water repellence and/or durability, thus increasing potential service-life of wood materials. However current treatments are limited because it is difficult to introduce and fix such modifications deep inside the tissue and cell wall. Within the scope of this thesis, novel chemical modification methods of wood cell walls were developed to improve both dimensional stability and water repellence of wood material. These methods were partly inspired by the heartwood formation in living trees, a process, that for some species results in an insertion of hydrophobic chemical substances into the cell walls of already dead wood cells, In the first part of this thesis a chemistry to modify wood cell walls was used, which was inspired by the natural process of heartwood formation. Commercially available hydrophobic flavonoid molecules were effectively inserted in the cell walls of spruce, a softwood species with low natural durability, after a tosylation treatment to obtain “artificial heartwood”. Flavonoid inserted cell walls show a reduced moisture absorption, resulting in better dimensional stability, water repellency and increased hardness. This approach was quite different compared to established modifications which mainly address hydroxyl groups of cell wall polymers with hydrophilic substances. In the second part of the work in-situ styrene polymerization inside the tosylated cell walls was studied. It is known that there is a weak adhesion between hydrophobic polymers and hydrophilic cell wall components. The hydrophobic styrene monomers were inserted into the tosylated wood cell walls for further polymerization to form polystyrene in the cell walls, which increased the dimensional stability of the bulk wood material and reduced water uptake of the cell walls considerably when compared to controls. In the third part of the work, grafting of another hydrophobic and also biodegradable polymer, poly(ɛ-caprolactone) in the wood cell walls by ring opening polymerization of ɛ-caprolactone was studied at mild temperatures. Results indicated that polycaprolactone attached into the cell walls, caused permanent swelling of the cell walls up to 5%. Dimensional stability of the bulk wood material increased 40% and water absorption reduced more than 35%. A fully biodegradable and hydrophobized wood material was obtained with this method which reduces disposal problem of the modified wood materials and has improved properties to extend the material’s service-life. Starting from a bio-inspired approach which showed great promise as an alternative to standard cell wall modifications we showed the possibility of inserting hydrophobic molecules in the cell walls and supported this fact with in-situ styrene and ɛ-caprolactone polymerization into the cell walls. It was shown in this thesis that despite the extensive knowledge and long history of using wood as a material there is still room for novel chemical modifications which could have a high impact on improving wood properties. / Der nachwachsende Rohstoff Holz wird aufgrund seiner guten mechanischen Eigenschaften und der leichten Verfügbarkeit für viele Anwendungszwecke genutzt. Quellen und Schrumpfen bei Feuchtigkeitsänderungen des hygroskopischen Werkstoffs Holz limitieren jedoch die Einsatzmöglichkeiten. Ein weiteres Problem stellt der mitunter leichte Abbau – u.a. bei feuchtem Holz - durch Mikroorganismen und/oder Insekten dar. Durch chemische Modifizierungen können die Dimensionsstabilität, die Hydrophobizität und die Dauerhaftigkeit verbessert und damit die potentielle Lebensdauer des Werkstoffes erhöht werden. Dabei ist die dauerhafte Modifikation der Zellwand nur äußerst schwer realisierbar. Inspiriert von der Kernholzbildung in lebenden Bäumen, ein zellwandverändernder Prozess, der Jahre nach der Holzbildung erfolgt, wurden im Rahmen dieser Arbeit neue Ansätze zur chemischen Modifizierung der Zellwände entwickelt, um die Dimensionsstabilität und Hydrophobizität zu erhöhen. Der erste Teil der Arbeit ist stark vom Prozess der Kernholzbildung inspiriert, eine abgeleitete Chemie wurde verwendet, um die Zellwände von Fichte, einem Nadelholz von geringer natürlicher Dauerhaftigkeit, zu modifizieren. Kommerziell verfügbare hydrophobe Flavonoide wurden nach einem Tosylierungsschritt erfolgreich in die Zellwand eingebracht, um so „artifizielles Kernholz“ zu erzeugen. Die modifizierten Holzproben zeigten eine verringerte Wasseraufnahme, die zu erhöhter Dimensionsstabilität und Härte führte. Dieser Ansatz unterscheidet sich grundlegend von bereits etablierten Modifikationen, die hauptsächlich hypdrophile Substanzen an die Hydroxylgruppen der Zellwand anlagern. Der zweite Teil der Arbeit beschäftigt sich mit der Polymerisation von Styren in tosylierten Zellwänden. Es ist bekannt, dass es nur eine schwache Adhäsion zwischen den hydrophoben Polymeren und den hydrophilen Zellwandkomponenten gibt. Die hydrophoben Styren-Monomere wurden in die tosylierte Zellwand eingebracht und zu Polystyren polymerisiert. Wie bei der Modifikation mit Flavonoiden konnte eine erhöhte Dimensionsstabilität und reduzierte Wasseraufnahme der Zellwände beobachtet werden. Im dritten Teil der Arbeit wurde das biologisch abbaubare, hydrophobe poly(ɛ-caprolacton) in der Zellwand aufpolymerisiert. Die Ergebnisse deuten darauf hin, dass Polycaprolacton in der Zellwand gebunden ist und zu einer permanenten Quellung führt (bis zu 5 %). Die Dimensionsstabilität nahm um 40 % zu und die Wasseraufnahmerate konnte um mehr als 35 % reduziert werden. Mit dieser Methode kann nicht nur dimensionsstabileres Holz realisiert werden, auch biologische Abbaubarkeit und damit eine einfache Entsorgung sind gewährleistest.
3

Zwei-Photonen-Kreuzkorrelations-Spektroskopie : Nachweis der Interaktionen einzelner Moleküle in der lebenden Zelle / Two-photon cross-correlation spectroscopy: Analysing the interactions of singel molecules in the live cell

Schwille, Petra 31 August 2007 (has links) (PDF)
The progress of miniaturisation towards the nanoscopic scale in science and technology has also influenced the biosciences. This is particularly important, since proteins, as the smallest functional units of life, exhibit a spectacular wealth of functionalities, enabling them to fulfil complex tasks in cells and organisms. For this reason, they are often termed molecular or cellular “machines”. To be able to investigate and better understand these fascinating molecules in their native environment, new analytical methods must be developed, with appropriately high sensitivity and spatial and temporal resolution. We describe one very promising technique based on fluorescence spectroscopy, which allows a quantitative analysis of protein- protein interactions in the live cell. / Die zunehmende Miniaturisierung bis hin zum nanoskopischen Maßstab in vielen technischen Disziplinen hat auch die Lebenswissenschaften ergriffen. Dies ist insofern von großer Bedeutung, als die Proteine als kleinste funktionale Einheiten des Lebens trotz ihrer winzigen Abmessungen eine faszinierende Komplexität aufweisen, die es ihnen erlauben, hoch differenzierte und spezialisierte Aufgaben in der Zelle und im Organismus zu übernehmen. Aus diesem Grund werden sie in der modernen Biologie auch als molekulare oder zelluläre „Maschinen“ bezeichnet. Um diese kleinen Wunderwerke zu studieren und ihre Funktionsweise in ihrer natürlichen Umgebung zu analysieren, bedarf es innovativer Technologien, die es erlauben, mit maximaler räumlicher und zeitlicher Auflösung auch einzelne Moleküle in der lebenden Zelle sichtbar zu machen und zu verfolgen. Im Folgenden wird eine von uns entwickelte fluoreszenzspektroskopische Methode vorgestellt, mit deren Hilfe die komplizierten Interaktionen zwischen Proteinen in der lebenden Zelle aufgeklärt werden können.
4

The role of the environment in molecular systems

Kilin, Dmitri S. 28 March 2000 (has links) (PDF)
Die Dissipation von Energie von einem molekularen System in die Umgebung und die damit verbundene Zerstörung der Phasenkohärenz hat einen Einfluss auf mehrere physikalische Prozesse wie Bewegung der Schwingungsmoden eines Moleküls, eines Ions in einer Falle oder einer Strahlungsfeldmode, sowie auf Excitonen- und Elektronentransfer. Elektronrntransfer spielt eine wichtide Rolle in vielen Bereichen der Physik und Chemie. In dieser Arbeit wird die Elektronentransferdynamik mit Bewegungsgleichungen für die reduzierte Dichtematrix beschrieben, deren Herleitung ausgehend von der Liouville- von Neumann Gleichung über die Kumulanten-Entwicklung führt. Durch Ankopplung an ein Wärmebad werden dissipative Effekte Berücksichtigt. Zunächst wird diese Theorie auf Modellsysteme angewendet, um die verschiedene Einflüsse der Umgebung auf Depopulation, Dephasierung und Dekohärenz besser zu verstehen. Dann wird die Dynamik von konkreten intramolekularen Transferreaktionen in realen Molekülen berechnet und die Ergebnisse mit denen von Experimenten und anderer Theorien vergliechen. Zu den untersuchten Systemen zälen die Komplexe H2P-ZnP-Q und ZnPD-H2P.
5

Metal/Organic/Inorganic Semiconductor Heterostructures Characterized by Vibrational Spectroscopies

Salvan, Georgeta 27 August 2003 (has links) (PDF)
Im Rahmen dieser Arbeit werden zwei Perylen-Derivate als Zwischenschichten in Ag/organischen Schichten/GaAs(100)-Heterostrukturen eingesetzt, um den Einfluss von unterschiedlichen chemischen Endgruppen auf die chemischen und strukturellen Eigenschaften beider Grenzflächen, sowie auf die Morphologie, Struktur und Kristallinität von organischen Schichten zu charakterisieren. Die molekularen Schichten von 3,4,9,10-Perylentetracarbonsäure Dianhydrid (PTCDA) und Dimethyl-3,4,9,10-Perylentetracarbonsäure Diimid (DiMe-PTCDI) werden durch organische Molekularstrahldeposition (OMBD) im Ultrahochvakuum auf S-passivierten GaAs(100):2x1-Substraten hergestellt. Weiterhin wird der Einfluss des Substrats untersucht, indem PTCDA-Wachstum auf H-passiviertem Si(100):1x1 durchgeführt wird. Als Hauptcharakterisierungsmethode wird die Ramanspektroskopie eingesetzt. Diese ist eine nicht-destruktive Methode, die auch in situ Untersuchungen des Wachstumsprozesses ermöglicht. Die komplementäre Infrarotspektroskopie sowie die Rasterkraftmikroskopie, Rasterelektronenmikroskopie und Röntgenbeugung (XRD) werden zur Ergänzung des Verständnisses der Heterostruktureigenschaften verwendet. Die Empfindlichkeit von Raman- und Infrarot-Spektroskopien auf die chemisch unterschiedlichen Endgruppen wird durch experimentelle Untersuchungen an PTCDA- und DiMe-PTCDI-Kristallen, beziehungsweise dicken Schichten und mit Hilfe theoretischer Berechnungen nachgewiesen. So wird zum ersten Mal eine vollständige Zuordnung der Schwingunsfrequenzen zu den internen Schwingungsmoden von DiMe-PTCDI vorgeschlagen. Im niedrigen Frequenzbereich der Ramanspektren werden die externen molekularen Schwingungsmoden, oder molekularen „Phononen“, die eine Signatur der Kristallinität darstellen, beobachtet. Die Phononen von DiMe-PTCDI werden in dieser Arbeit zum ersten Mal in einem Ramanexperiment beobachtet. Mittels resonanter Ramanspektroskopie wird die Detektion von C-H-Deformationsmoden und C-C-Streckmoden sogar im Sub-Monolagenbereich molekularer Bedeckung auf Halbleiteroberflächen möglich. Anhand dieser Ramanspektren konnte die Art der Wechselwirkung zwischen Molekülen und passivierten Oberflächen näher charakterisiert werden. Zusätzliche Information bringen die GaAs LO- und Plasmon-gekoppelten LO- Phononen, deren Intensitätsverhältnis im Ramanspektrum die Bandverbiegung im GaAs-Substrat widerspiegelt. Die Kristallinität der hergestellten organischen Schichten mit Dicken größer als 2 nm wird durch Beobachtung der molekularen „Phononen“ nachgewiesen. Als allgemeine Tendenz konnte bewiesen werden, dass mit steigender Substrattemperatur während des Wachstums größere Kristalldomänen entstehen. Weiterhin wird eine Methode vorgeschlagen, um den Anteil von zwei PTCDA- Kristallphasen mit ähnlichen Gitterparametern anhand der Raman- beziehungsweise XRD-Spektren zu bestimmen. Durch ihre sehr gute Ordnung können die DiMe-PTCDI- Schichten als Modellsystem dienen, um eine Methode zu entwickeln, die die Molekülorientierung im Bezug zum Substrat aus polarisationsabhängigen Raman- und Infrarotmessungen bestimmt. Bei der Metall-Bedampfung wird die Empfindlichkeit der Ramanstreuung an internen molekularen Schwingungsmoden von PTCDA und DiMe-PTCDI-Schichten durch oberflächenverstärkte Ramanstreuung (SERS) erhöht. Anhand der unterschiedlichen Signalverstärkungsmechanismen werden Informationen über die Ag/Molekül- Wechselwirkung und die Morphologie der Ag-Schichten abgeleitet.
6

Theoretical investigation of excited states of C3 and pathways for the reaction C3+C3 = C6

Terentyev, Alexander Victorovich 06 June 2005 (has links) (PDF)
For the astrophysically relevant molecules, C3 and C6, ab initio calculations are performed to study the geometries of different neutral isomers, the electronic structures of C3 in its ground and excited states, and possible pathways for the reaction C3 + C3 = C6. For C3 we present calculations for the potential energy surfaces of C3 in different electronic configurations, including the singlet ground state, the triplet ground state, and some higher excited states. The geometries studied include triangular shapes with two identical bond lengths, but different bond angles between them. For the singlet and triplet ground states in the linear geometry, the total energies resulting from the mixed density functional-Hartree-Fock and quadratic configuration interaction methods reproduce the experimental values, i.e. the triplet occurs 2.1 eV above the singlet. In the geometry of an equilateral triangle, we find a low-lying triplet state with an energy of only 0.8 eV above the energy of the singlet in the linear configuration, so that the triangular geometry yields the lowest excited state of C3. For the higher excited states up to about 12 eV above the ground state, we apply time-dependent density functional theory. Even though the systematic error produced by this approach is of the order of 0.4 eV, the results give new insight into the potential energy landscape for higher excitation energies. For C6 we consider the known linear states and the lowest state of monocyclic ring. The potential energy surfaces, were built for various pathways for the reaction C3 + C3 = C6. For this investigation we apply a mixed density functional-Hartree-Fock method which gives good results with respect to the experimental values and does not demand much computational time. We have considered collinear and symmetric non-linear as well as some non-symmetric collision schemes of two C3 subunits, producing the 1Ag states of a D2h isomer, one in a cyclic shape, the other in the form of two triangles connected by the corners, and for the non-symmetric scheme the 1A' state of a Cs isomer. To investigate the pathways for the creation of C6 from two C3 we emphasize the importance of the electron configuration for the reacting C3 subunits. As a result we have obtained the following rule: The stable linear as well as the cyclic C6 molecule can only be created in the case when at least one C3 has a partially filled orbital, requiring an excited state with respect to the singlet ground state of C3. / Für die astrophysikalisch bedeutenden Moleküle C3 und C6 werden ab initio Berechnungen von elektronischen Zuständen verschiedener Isomere durchgeführt. Basierend auf der Optimierung verschiedener neutraler Isomere von C3 im Grundzustand und mehreren angeregten Zuständen werden mögliche Wege für die Reaktion C3 + C3 = C6 studiert. Für C3 werden ab initio Berechnungen für die Flächen der potentiellen Energie in verschiedenen elektronischen Konfigurationen durchgeführt, einschließlich des Singulett-Grundzustands, des Triplett-Grundzustands, und einiger höherer Anregungszustände. Die untersuchten Geometrien schließen gleichschenklige Dreiecke mit zwei identischen Bindungslängen ein, wobei der Bindungswinkel dazwischen variiert wird. Die Gesamtenergien, die sich in einem gemischten Hartree-Fock-Dichtefunktional-Verfahren und unter Verwendung der quadratischen Konfigurationswechselwirkung ergeben, reproduzieren die experimentell beobachtete Energiedifferenz von 2.1 eV zwischen dem niedrigsten Triplett-Zustand und dem Singulett-Grundzustand. In der Geometrie des gleichseitigen Dreiecks ergibt sich ein niedrigerliegender Triplett-Zustand mit einer Energie von nur 0.8 eV über der Energie des Singuletts im linearen Isomer, so dass die dreieckige Geometrie den niedrigsten Anregungszustand von C3 ergibt. Für höhere Anregungsenergien bis zu 12 eV über dem Grundzustand wird zeitabhängige Dichtefunktional-Theorie zur Ermittlung der Energie angeregter elektronischer Konfigurationen eingesetzt. Obwohl der von dieser Methode produzierte systematische Fehler von der Größenordnung von 0.4 eV ist, ergeben sich interessante neue Einblicke in die Potentiallandschaft angeregter Zustände. Für C6 betrachten wir das bekannte lineare Isomer und das zyklische Isomer. Der Verlauf der Potentialoberflächen wird für verschiedene Reaktionspfade C3+C3 = C6 untersucht, wobei ein gemischtes Hartree-Fock-Dichtefunktional-Verfahren einesetzt wird. Im Mittelpunkt des Interesses stehen dabei kollineare Anordnungen linearer C3 Moleküle, symmetrische Kollisionen nichtlinearer Reaktanden, sowie einige nichtsymmetrische koplanare Geometrien des Zusammenstosses zweier linearer Moleküle. Als Ergebnis der Reaktionen mit symmetrischen Anordnungen ergibt sich lineares C6 oder zyklisches C6 mit D2h Symmetrie in einem elektronischen Zustand der höchsten Symmetrie 1Ag. Das nicht-symmetrische Reaktionsschema führt zu einem planaren Isomer Cs im Zustand 1A'. Um die Wege für die Bildung von C6 aus zwei C3 zu untersuchen, ist die elektronische Konfiguration der Reaktanden von entscheidender Bedeutung. Als Ergebnis erhält man die folgende Regel: sowohl ein stabiles lineares als auch ein zyklisches C6 Molekül können nur gebildet werden, wenn zumindest eines der C3 Moleküle ein teilweise gefülltes Orbital hat, wofür eine Anregung aus dem Singulett-Grundzustand heraus erforderlich ist.
7

Processed small RNAs in Archaea and BHB elements

Berkemer, Sarah J., Höner zu Siederdissen, Christian, Amman, Fabian, Wintsche, Axel, Will, Sebastian, Hofacker, Ivo L., Prohaska, Sonja J., Stadler, Peter F. 27 October 2015 (has links) (PDF)
Bulge-helix-bulge (BHB) elements guide the enzymatic splicing machinery that in Archaea excises introns from tRNAs, rRNAs from their primary precursor, and accounts for the assembly of piece-wise encoded tRNAs. This processing pathway renders the intronic sequences as circularized RNA species. Although archaeal transcriptomes harbor a large number of circular small RNAs, it remains unknown whether most or all of them are produced through BHB-dependent splicing. We therefore conduct a genome-wide survey of BHB elements of a phylogenetically diverse set of archaeal species and complement this approach by searching for BHB-like structures in the vicinity of circularized transcripts. We find that besides tRNA introns, the majority of box C/D snoRNAs is associated with BHB elements. Not all circularized sRNAs, however, can be explained by BHB elements, suggesting that there is at least one other mechanism of RNA circularization at work in Archaea. Pattern search methods were unable, however, to identify common sequence and/or secondary structure features that could be characteristic for such a mechanism.
8

Epitaxial nanolayers of large organic molecules: Quaterrylenes on organic and inorganic substrates

Franke, Robert 20 June 2007 (has links)
In der vorliegenden Arbeit wurde das hochgeordnete Wachstum von großen organischen Molekülen auf kristallinen Substraten mit Hilfe der Quaterrylenderivate QT, QTCDI und QTCMI untersucht. Um derartige Schichten herstellen und charakterisieren zu können, wurde eine Organische Molekularstrahlepitaxy (OMBE)-Anlage aufgebaut. Allerdings stellt OMBE bisher nur ein Standardverfahren für die Präparation hochgeordneter Schichten bestehend aus kleineren Molekülen dar. Im Zusammenhang mit größeren Molekülen ergibt sich die Frage, ob auf Grund der höheren Sublimationstemperatur diese unzersetzt aufgedampft werden können. Optische Spektroskopieexperimente haben gezeigt, daß dies im Fall von QT möglich ist. Andererseits beginnt die Zersetzung von QTCDI bereits unterhalb seiner Sublimationstemperatur, wobei als eines der Produkte QTCMI entsteht. Ein wesentliches Anliegen dieser Arbeit bestand darin, die Frage zu klären, inwieweit diese großen Aromate epitaktisch auf anorganischen als auch organischen Substraten aufwachsen. Organisch-anorganische Schichtsysteme wurden durch Aufdampfen der Quaterrylenderivate auf einkristalline, rekonstruierte Goldoberflächen erzeugt und anschließend mit LEED und STM charakterisiert. Trotz der eingeschränkten thermischen Stabilität von QTCDI konnten sowohl hochgeordnete QT als auch QTCDI Monolagen auf Au(111) hergestellt werden, die jeweils aus flachliegenden Molekülen bestehen. Im Falle von QTCDI konnte dieses Resultat durch eine Optimierung der Probenherstellung erreicht werden. Im Unterschied zur Anordnung der QT Moleküle in Reihen, bilden die QTCDI Moleküle eine dazu deutlich verschiedene brickwall Struktur, die durch die Bildung von Wasserstoffbrückenbindungen zwischen den Randgruppen der QTCDI Moleküle erklärt werden kann. In ähnlicher Weise zeigt sich der Einfluß der Substituenten auf die Anordnung der Moleküle in der Schicht an den gefunden QTCMI Strukturen. Im Unterschied zu QTCDI Monolagen auf Au(111), konnten keine reinen QTCMI Proben erzeugt werden. Die Ursache dafür ist, daß QTCMI zwar in der QTCDI Knudsenzelle angereichert werden kann, aber beide Moleküle ähnliche Verdampfungstemperaturen besitzen. Selbst die Präparation einer reinen QTCMI Probe nach vollständiger Umsetzung aller QTCDI Moleküle in der Knudsenzelle erscheint schwierig, da bei diesen Temperaturen auch die Zersetzung der QTCMI Moleküle stattfindet. Des weiteren wurden QT Monolagen auf Au(100) Substraten hergestellt. Die QT Moleküle besitzen auf dieser Oberfläche dieselbe Anordnung wie auf Au(111). Auf beiden Oberflächen wurden nur bestimmte Domänenwinkel beobachtet, die die Ausrichtung der Moleküldomänen im Bezug zum Substrat beschreiben. Da die rekonstruierten Au(100) Oberfläche typischerweise nur eine Phase je Terrasse ausbildet, entsteht eine ausgedehnte QT Domäne bereits durch eine einzige Adsorbatstruktur. Andererseits erfordert das homogene Wachstum einer ausgedehnten QT Domäne auf verschiedenen Rekonstruktionsdomänen der Au(111) Oberfläche die Existenz der drei beobachteten Adsorbatstrukturen, die sich durch unterschiedliche Domänenwinkel auszeichnen. Weiterhin wurden Anzeichen dafür gefunden, daß die rekonstruierten Au(111) und Au(100) Oberflächen durch die Adsorption von QT Molekülen verändert werden. Während dieser Effekt im Fall der Au(111) Oberfläche auch bei anderen organischen Molekülen beobachtet wurde, ist unseres Wissens nach in der Literatur eine Veränderung der Au(100) Rekonstruktion in Folge des Aufdampfens einer organischen Molekülschicht bisher nicht beschrieben worden. Darüber hinaus können alle beobachteten Adsorbatstrukturen der Quaterrylenderivate auf Au(111) und Au(100) im Rahmen des point-on-line Modells erklärt werden. Das Wachstum der zweiten Monolage QT auf Au(111) wurde als Beispiel für organisch-organische Homoepitaxy untersucht. Die Moleküle der zweiten QT Monolage bilden wiederum Reihen, die entlang der QT Reihen der ersten Monolage wachsen. Als unmittelbare Folge existiert nur eine mögliche Domänenorientierung im Bezug zur ersten Monolage QT. Im Unterschied zu den ausschließlich flachliegenden Molekülen der ersten Monolage QT wurden in der zweiten Monolage alternierend stehende und liegende Moleküle beobachtet. Die resultierende Struktur ähnelt dabei der QT Kristallstruktur. Diese Resultate zeigen, daß die Au(111) Oberfläche einen vergleichsweise starken Einfluß auf die Struktur der ersten QT Monolage hat, während sie sich deutlich weniger stark auf die Struktur der zweiten QT Monolage auswirkt. Einen weiteren Aspekt der vorliegenden Arbeit stellen organisch-organische Heterostrukturen bestehend aus QT-HBC Schichten auf Au(111) dar. Im Zusammenhang mit der Untersuchung dieser Schichten sollte geklärt werden, ob der kürzlich gefundene Epitaxytyp line-on-line das Wachstum organisch-organischer Heterostrukturen generell beschreiben kann. Im Gegensatz zu typischen STM Bildern von organisch-organischen Heterostrukturen aus der Literatur, konnten hier Bilder aufgezeichnet werden, in der beide Molekülsorten deutlich voneinander unterschieden werden können. Dabei wurde eine QT/HBC Heterostruktur gefunden, bei der flachliegende QT Moleküle Reihen bilden. Im Unterschied zu QT auf Au(111) sind diese Reihen nicht dicht aneinander gepackt. Diese Beobachtung deutet darauf hin, daß die QT Struktur durch ein energetisch günstiges Packen der QT Moleküle auf den HBC Molekülen bestimmt wird. Darüber hinaus wurden zwei weitere Adsorbatstrukturen mit deutlich verschiedenen Gitterparametern gefunden. Hochaufgelöste STM Bilder legen nahe, daß diese beiden Strukturen alternierend aus stehenden und liegenden Moleküle bestehen. Die Experimente liefern Anzeichen dafür, daß die jeweilige Anordnung der QT Moleküle in der Schicht von der Dicke der darunterliegen HBC Schicht bestimmt wird. Demnach liegen die QT Moleküle auf einer Monolage HBC infolge der stärkeren Wechselwirkung zur Au(111) Oberfläche flach, während die bei dickeren HBC Schichten schwächere Wechselwirkung mit dem Gold eine Struktur aus stehenden und liegenden Molekülen ähnlich der Kristallstruktur zur Folge hat.
9

Numerische Simulationen zur Thermodynamik magnetischer Strukturen mittels deterministischer und stochastischer Wärmebadankopplung

Schröder, Christian 15 September 2000 (has links)
In dieser Arbeit wurden zwei verschiedene Wärmebadankopplungen an klassische Spin-Systeme realisiert. Zum einen wurde ein stochastischer Ansatz mittels Landau-Lifshitz-Dämpfung und Fluktuationen numerisch realisiert und zum anderen wurde ein vollkommen deterministischer Ansatz entworfen und optimiert. Mit Hilfe dieser Ankopplungsmethoden ist es möglich, sowohl statische magnetische Eigenschaften klassischer Spin-Systeme als auch deren dynamische magnetische Eigenschaften zu simulieren. Als Anwendung wurden Spin-Gitter-Relaxationszzeiten und Neutronenstreuquerschnitte für molekulare Magneten wie z.B. dem "ferric wheel" berechnet und mit aktuellen experimentellen Ergebnissen verglichen. Als zweite Anwendung wird die Magnetisierungsumkehr in einem sphärischen Teilchen diskutiert.
10

Neues von binären Phosphorsulfiden und anderen Phosphorchalkogen-Molekülen und ihren Derivaten / News from phosphorus sulfides and other phosphorus chalcogen molecules and their derivatives

Nowottnick, Heike 25 July 2000 (has links)
Diese Arbeit liefert einen Beitrag zur Chemie der Phosphorsulfide. Die Sulfurierung von alpha-P4S4 mit Triphenylantimonsulfid führte zu den neuen Verbindungen delta-P4S6 und epsilon-P4S6, wobei die Entdeckung von delta-P4S6 die Lücke in der Verbindungsreihe der Phosphorsulfide mit beta-P4S5-Grundgerüst schließt. Die Reaktion von P4S10 mit Triphenylphosphin lieferte delta-P4S7. Der molekulare Aufbau dieser Phosphorsulfide wurde mit Hilfe der 31P-NMR-Spektroskopie ermittelt. Anhand der Produktverteilungen konnten Aussagen über mögliche Reaktionswege gemacht werden. Bei der Reaktion von P4S3 und P4Se3 mit NbCl5 konnten Einkristalle mit unerwarteter Struktur beobachtet werden: [beta-P4S4(NbCl5)2] und [P4Se3(NbCl5)]. [beta-P4S4(NbCl5)2 enthält als Strukturelement beta-P4S4 von dem bis heute noch keine Einkristallstrukturaufnahmen existieren. Die Verbindungsklasse alpha-P4S3((NHR)exo)2 und alpha-P4S3(NR) konnte durch weitere Moleküle dieser Art, jedoch mit größerem Rest R (R = Fluorenyl, Triphenylmethylphenyl, Adamantyl) ergänzt werden. Die Umsetzung von alpha-P4Se3I2 mit 1-Adamantanammoniumchlorid und tert.-Buytylammoniumchlorid führte zu den bislang noch nicht beschriebenen Verbindungen alpha-P4Se3Iexo(NHR)exo und alpha-P4Se3Iendo(NHR)exo. Die Untersuchung der beta-alpha-Umwandlung hat ergeben, daß bei der Reaktion an Licht die Produkte alpha-P4S3I2, P4S3 und PI3 entstanden sind. Bei der Reaktion unter Lichtausschluß erfolgt der Zerfall nur sehr langsam. Aufgrund der Reaktionen von beta-P4S3I2 und alpha-P4S3I2 mit Natriumthioslulfat und Stärke, sowie der Stabilität der Verbindung beta-P4S3(CH3)2, kann heute davon ausgegangen werden, daß freies Iod für die beta-alpha-Umwandlung notwendig ist.

Page generated in 0.0248 seconds