• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 12
  • 3
  • Tagged with
  • 79
  • 74
  • 56
  • 41
  • 39
  • 36
  • 31
  • 31
  • 31
  • 25
  • 18
  • 14
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Electronic Properties and Chemistry of Metal / Organic Semiconductor/ S-GaAs(100) Heterostructures

Gavrila, Gianina Nicoleta 13 January 2006 (has links) (PDF)
Im Rahmen dieser Arbeit werden drei Perylen-Derivate als Zwischenschichten in Metall/organische Schicht/S-GaAs(100)-Heterostrukturen eingesetzt. Das Ziel dieser Arbeit ist, den Einfluss von unterschiedlichen chemischen Endgruppen auf die elektronischen und chemischen Eigenschaften der Grenzflächen, sowie auf die molekulare Orientierung in den organischen Schichten nachzuweisen. Die Moleküle 3,4,9,10-Perylentetracarbonsäure Dianhydrid (PTCDA), 3,4,9,10-PerylenTetraCarbonsäure DiImid (PTCDI) und Dimethyl-3,4,9,10-PerylenTetraCarbonsäure DiImid (DiMe-PTCDI) wurden durch organische Molekularstrahldeposition (OMBD) im Ultrahochvakuum auf Schwefel-passivierte GaAs(100):2x1-Substrate aufgedampft. Oberflächensensitive Charakterisierungsverfahren wie Photoemissionsspekroskopie (PES), Inverse Photoemissionsspektroskopie (IPES) und Nahkantenröntgenfeinstrukturmessungen (NEXAFS) wurden zur Charakterisierung eingesetzt. Theoretische Berechnungen mit Hilfe von Dichte-Funktional-Methoden wurden durchgeführt, um eine Zuordnung von verschiedenen Komponenten in Rumpfniveauspektren zu ermöglichen. Die NEXAFS-Messungen ermöglichen eine genaue Bestimmung der Molekülorientierung in Bezug zum Substrat. So lässt sich nachweisen, dass eine kleine Änderung von chemischen Endgruppen z.B. bei DiMe-PTCDI verglichen mit PTCDI, eine dramatische Änderung der Molekülorientierung hervorruft. Die Valenzbandspektren von DiMe-PTCDI zeigen eine energetische Dispersion von 0.2 eV, die auf eine -Orbital-Überlappung zurückzuführen ist und die Ausbildung von Valenzbändern belegt. Die Energieniveauanpassung an der organische Schicht/S-GaAs-Grenzfläche, sowie die Transport-Bandlücke von PTCDI, DiMe-PTCDI und PTCDA wurden mit Hilfe von PES und IPES bestimmt. Die elektronischen, chemischen und strukturellen Eigenschaften von Metall/Organische Schicht- Grenzflächen wurden mit Hilfe von Rumpfniveauspektroskopie und NEXAFS untersucht. Mg reagiert stark mit den Endgruppen von PTCDA und PTCDI, währenddessen die In-Atome an einem Ladungstransferprozess mit den Perylen-Kernen aller dreien Molekülen beteiligt sind, wobei der Betrag der transferierten Ladung maximal für den Fall von PTCDI wird. Während Mg sehr wenig in die organischen Schichten diffundiert, zeigt In sehr starke Eindiffusion in PTCDA-Schichten und schwache in PTCDI-Schichten.
22

Nonadiabatic quantum molecular dynamics with hopping. III. Photoinduced excitation and relaxation of organic molecules

Fischer, Michael, Handt, Jan, Schmidt, Rüdiger 09 September 2014 (has links) (PDF)
Photoinduced excitation and relaxation of organic molecules (C2H4 and CH2NH+2) are investigated by means of nonadiabatic quantum molecular dynamics with hopping (NA-QMD-H), developed recently [Fischer, Handt, and Schmidt, paper I of this series, Phys. Rev. A 90, 012525 (2014)]. This method is first applied to molecules assumed to be initially ad hoc excited to an electronic surface. Special attention is drawn to elaborate the role of electron-nuclear correlations, i.e., of quantum effects in the nuclear dynamics. It is found that they are essential for a realistic description of the long-time behavior of the electronic relaxation process, but only of minor importance to portray the short-time scenario of the nuclear dynamics. Migration of a hydrogen atom, however, is identified as a quantum effect in the nuclear motion. Results obtained with explicit inclusion of an fs-laser field are presented as well. It is shown that the laser-induced excitation process generally leads to qualitatively different gross features of the relaxation dynamics, as compared to the field-free case. Nevertheless, the nuclear wave packet contains all subtleties of the cis-trans isomerization mechanism as observed without a laser field.
23

Scanning tunneling microscopy on low dimensional systems

Salazar Enríquez, Christian David 13 October 2016 (has links) (PDF)
This thesis contains experimental studies on low dimensional systems by means of scanning tunneling microscopy (STM). These studies include investigations on dinickel molecular complexes and experiments on iron nanostructures used for the implementation of the spin-polarized scanning tunneling microscopy technique at the IFW-Dresden. Additionally, this work provides detailed information of the experimental technique (STM), from the theoretical background to the STM-construction, which was part of this doctoral work. Molecular anchoring and electronic properties of macrocyclic magnetic complexes on gold surfaces have been investigated by mainly scanning tunneling microscopy and complemented by X-rays photoelectron spectroscopy. Exchange–coupled macrocyclic complexes [Ni2L(Hmba)]+ were deposited via 4-mercaptobenzoate ligands on the surface of Au(111) single crystals. The results showed the success of gold surface-grafted magnetic macrocyclic complexes forming large monolayers. Based on the experimental data, a growth model containing two ionic granular structures was proposed. Spectroscopy measurements suggest a higher gap on the cationic structures than on the anionic ones. Furthermore, the film stability was probed by the STM tip with long-term measurements. This investigation contributes to a new promising direction in the anchoring of molecular magnets to metallic surfaces. Iron nanostructures of two atomic layers and iron-coated tungsten tips were used in order to implement the spin-polarized scanning tunneling microscopy technique at the IFW-Dresden. First of all, a systematic study of the iron growth, from sub-monolayers to multilayers on a W(110) crystal is presented. Subsequent to the well-understanding of the iron growth, the experiments were focused on revealing, for the first time at the IFW-Dresden, the magnetic inner structure of iron nanostructures. The results evidently showed the presence of magnetic domains of irregular shapes. Furthermore, SP-STM probed the bias voltage dependence of the magnetic contrast on the iron nanostructures. This technique opens up a new powerful research line at the IFW-Dresden which is promising for the study of quantum materials as molecular magnets and strongly correlated systems.
24

Generation and Characterisation of Nanostructures from Single Adsorbed Polyelectrolyte Molecules

Gorodyska, Ganna 09 September 2005 (has links)
Visualization and study of reconformation of polyelectrolytes (PEs) of different architecture is of great fundamental and practical interest. Verification of theoretical predictions with experiment is of essential importance. On the other hand, a wide range of bottom-up techniques based on patterning of matter on the length scale of a few nanometers have been recently developed. Particularly interesting is the possibility of using self-assembled single molecule structures as templates for the deposition of inorganic matter, in particular metals. Synthetic "normal-sized" polymers of various architecture, like poly-2-vinylpyridine (P2VP) or polystyrene-poly(2-vynil pyridine) P2VP7-PS7 star-like block copolymer, adsorbed on solid substrates have been visualized for the first time with molecular resolution by AFM in different conformation. This finding allowed us to study largely discussed problem, a coil-to-globule transition of PEs. It was found that PE molecules undergo conformational transitions from stretched worm-like coil to compact globule via set of necklace-like globules, as the fraction of charged monomers decreases with an increase of pH and ionic strength. These results are in good agreement with recently developed DRO theory for weakly charged flexible PEs in poor solvent. The size of the deposited single molecules correlates very well with molecular dimensions in solution obtained in light scattering experiments. PE single molecules of various architectures was mineralized in different conformations that constitutes the route to nanoparticles with desired shape (including wire-shape and star-shaped), size, and composition (including metallic, magnetic and semiconductive nanoparticles). It was shown that molecular details of the adsorbed linear flexible PE molecules determine the dimensions of the nanostructures after metallization and that observed sizes are consistent with the decoration of single molecules with nanoclusters. Thus those metallized nanoparticles (cluster assembles) reflect the conformation of original adsorbed PE molecules. The dimensions of the obtained nanowires are significantly smaller than those previously reported. All of these features are of the potential benefit in applications for nanodevices. Metallization of the PS7-P2VP7 improves AFM resolution due to the selective deposition of Pd clusters along the P2VP chains. For the first time, the number of the P2VP second generation arms of the heteroarm block-copolymer was directly counted in the single molecule AFM experiment. Simple contrasting procedure was developed to improve AFM visualization of positively charged polymer chains deposited on the substrates of relatively high roughness. This method allows increasing the thickness of the resulting structures up to 10 nm, and, consequently, provide visualization of polymer chains on rough surfaces. This innovation is important for the development of single molecule experiments with polymer chains. The reaction of HCF-anion could be used for recognition of polycation molecules, when polycations, polyanions and neutral molecules coexist on the surface. Recently, the study was strongly restricted to atomically smooth surfaces. The contrasting procedure extends the range of substrates (Si-wafers, chemically modified or patterned Si-wafers, polished glasses, polymer films, etc) appropriate for the experiments. Thus, polymer single molecules can be considered not only as representative of the ensemble molecules, but also as individual nanoscale objects which can be used for future nanotechnology for the fabrication of single molecule electronic devices. Also these findings are important from fundamental point of view, since developed approach can be successfully applied for investigation of various "classical" problems in polymer science, such as polymer reconformation, interpolyelectrolyte complex formation, polymer diffusion, adsorption, etc.
25

Synthesis and Application of Phosphonium Salts as Lewis Acid Catalysts

Guo, Chunxiang 11 August 2021 (has links)
In the first part of this work, a convenient and high yielding synthetic strategy was developed to approach highly electrophilic fluorophosphonium cations as triflate salts. Through in situ electrophilic fluorination of phosphanes with commercially available bench-stable N-fluorobenzenesulfonimide (NFSI), followed by subsequent methylation of the [N(PhSO2)2]- anion with MeOTf, a library of mono-, di- and tri- cationic fluorophosphonium triflates were obtained in excellent yields. The Lewis acidities of all synthesized fluorophosphonium triflates salts were evaluated by both theoretical and experimental methods. These fluorophosphonium triflates have been develop as catalysts for the conversation of formamides into N-sulfonyl formamidines. CHAPTER II of this work focus on developing electrophilic fluorophosphonium cation as Lewis acid pedant in both inter- and intra- molecular FLP systems, as well as exploring their application in small molecular activation and functionalization, such as reversible CO2 sequestration and binding of carbonyls, nitriles and acetylenes. CHAPTER III of this thesis reports on the reaction of electrophilic fluorophosphonium triflates with trimethylsilyl nucleophiles (Me3SiX, X = CN, N3), which selectively yields either pseudohalo-substituted flurophosphoranes or pseudohalo-substituted phosphonium cations.:1. Introduction 1 1.1. Frustrated Lewis Pair chemistry 2 1.2. Phosphorus derivatives as strong Lewis acids 6 2. Objective 11 3. CHAPTER I: Synthesis of fluorophosphonium triflate salts and application as catalyst 15 3.1. Electrophilic fluorination of phosphanes: a convenient approach to electrophilic fluorophosphonium cations 15 3.2. Fluorophilicities and Lewis acidities of the obtained fluorophosphonium derivatives 23 3.2.1. Evaluation of fluorophilicities and Lewis acidities of the obtained fluorophosphonium cations 24 3.2.2. Reactions of fluorophosphonium salts with selected formamides. 27 3.2.3. Reactions of fluorophosphonium salts with selected urea derivatives 31 3.3. Transformation of formamides to N-sulfonyl formamidines using fluorophosphonium triflates as active catalysts 34 4. CHAPTER II: Bifunctional electrophilic fluorophosphonium triflates as intramolecular Frustrated Lewis Pairs 45 5. CHAPTER III: Reaction of fluorophosphonium triflate salts with trimethylsilyl nucleophiles 63 6. Summary 73 7. Perspective 77 8. Experimental section 80 8.1. Materials and methods 80 8.2. Experimental details for CHAPTER I 82 8.2.1. Preparation of imidazoliumyl-substituted phosphanes. 82 8.2.1.1. Preparation of [Ph2LcMeP][OTf] 82 8.2.1.2. Preparation of [Ph2LciPrP][OTf] 83 8.2.1.3. Preparation of [(C6F5)2LcMeP][OTf] 83 8.2.1.4. Preparation of [(C6F5)2LciPrP][OTf] 84 8.2.1.5. Preparation of [PhLcMe2P][OTf]2 85 8.2.1.6. Preparation of [PhLciPr2P][OTf]2 85 8.2.2. Preparation of fluorophosphonium bis(phenylsulfonyl)amide salts 86 8.2.2.1. Preparation of [36(NSI)]. 86 8.2.2.2. Preparation of 58a[NSI] 87 8.2.2.3. Preparation of 58b[N(SO2Ph)2] 88 8.2.3. Preparation of fluorophosphonium triflate salts 88 8.2.3.1. Preparation of 36[OTf] 89 8.2.3.2. Preparation of 36[H(OTf)2] 89 8.2.3.3. Preparation of 58a[OTf] 90 8.2.3.4. Preparation of 58b[OTf] 91 8.2.3.5. Preparation of 58c[OTf] 91 8.2.3.6. Preparation of 59a[OTf] 92 8.2.3.7. Preparation of 59b[OTf] 93 8.2.3.8. Preparation of 60Mea[OTf]2 94 8.2.3.9. Preparation of 60iPra[OTf]2 94 8.2.2.10. Preparation of 60Meb[OTf]2 95 8.2.3.11. Preparation of 60iPrb[OTf]2 96 8.2.3.12. Preparation of 61Me[OTf]3 97 8.2.3.13. Preparation of 61iPr[OTf]3 97 8.2.4. Reaction of fluorophosphonium triflate salts with nucleophiles 98 8.2.4.1. Preparation of 62a[OTf] 98 8.2.4.2. Preparation of 62b[OTf] 99 8.2.4.3. Preparation of 62c[OTf] 100 8.2.4.4. Preparation of 63 100 8.2.4.5. Preparation of 65 101 8.2.4.6. Preparation of 69a[OTf] 102 8.2.4.7. Preparation of 69b[OTf] 103 8.2.5. Synthesis of H[N(SO2R)(SO2Ph)] and corresponding sodium salt 103 8.2.5.1. General procedure for the formation of N-sulfonyl-sulfonamides 103 8.2.5.2. General procedure for the formation of sodium bis(sulfonyl)amides 104 8.2.5.3. Preparation of HN(SO2Ph)2, Na[N(SO2Ph)2] and [nBu4N][N(SO2Ph)2] 104 8.2.5.4. Preparation of 81a and 82a 105 8.2.5.5. Preparation of 81b and 82b 106 8.2.5.6. Preparation of 81c and 82c 106 8.2.5.7. Preparation of 81d and 82d 107 8.2.5.8. Preparation of 81e and 82e 108 8.2.5.9. Preparation of 81f and 82f 108 8.2.5.10. Preparation of 81g and 82g 109 8.2.5.11. Preparation of 81h and 82h 109 8.2.6. Synthesis of N-sulfonyl amidines 110 8.2.6.1. General procedure for the catalytic formation of N-sulfonyl amidines 110 8.2.6.2. Preparation of 64 110 8.2.6.3. Preparation of 72 111 8.2.6.4. Preparation of 73 112 8.2.6.5. Preparation of 74 112 8.2.6.6. Preparation of 75 113 8.2.6.7. Preparation of 76 114 8.2.6.8. Preparation of 77 114 8.2.6.9. Preparation of 78 115 8.2.6.10. Preparation of 79 116 8.2.6.11. Preparation of 80a,b 116 8.2.6.12. Preparation of 83b 117 8.2.6.13. Preparation of 83c 118 8.2.6.14. Preparation of 83d 119 8.2.6.15. Preparation of 83e 119 8.2.6.16. Preparation of 83f 120 8.2.6.17. Preparation of 83g 121 8.2.6.18. Preparation of 83h 122 8.3. Experimental details for CHAPTER II 123 8.3.1. Preparation of N-containing phosphanes 123 8.3.1.1. Preparation of 2-(bis(perfluorophenyl)phosphaneyl)pyridine 123 8.3.1.2. Preparation of 2-(bis(perfluorophenyl)phosphaneyl)-1-methylimidazole 124 8.3.1.3. Preparation of 2-(bis(perfluorophenyl)phosphaneyl)-N,N-dimethylaniline 124 8.3.2. Preparation of N/P Frustrated Lewis Pairs 125 8.3.2.1. General procedure for the synthesis of N/P-Frustrated Lewis pairs 125 8.3.2.2. Preparation of 85[OTf] 126 8.3.2.3. Preparation of 86[OTf] 126 8.3.2.4. Preparation of 87[OTf] 127 8.3.2.5. Preparation of 88[OTf] 128 8.3.2.6. Preparation of 89[OTf] 129 8.3.3. Synthesis of compound 84[OTf] 130 8.3.4. Reaction of N/P FLP with carbonyls, nitriles or acetylenes 131 8.3.4.1. General reaction conditions for the reaction of N/P FLP with carbonyls and nitriles 131 8.3.4.2. Preparation of 90[OTf] 131 8.3.4.3. Preparation of 91[OTf] 132 8.3.4.4. Preparation of 92[OTf] 133 8.3.4.5. Preparation of 93a[OTf] 134 8.3.4.6. Preparation of 93b[OTf] 134 8.3.4.7. Preparation of 94[OTf] 135 8.3.4.8. Preparation of 95[OTf] 136 8.3.4.9. Preparation of 96[OTf] 137 8.3.4.10. Preparation of 97a[OTf] 138 8.3.4.11. Preparation of 97b[OTf] 139 8.3.4.12. Preparation of 99a[OTf]2 140 8.3.4.13 Preparation of 100b[OTf] 141 8.3.5. Reaction of N/P FLPs with CO2 142 8.3.5.1 Reaction of 85[OTf] with CO2 142 8.3.5.2 Reaction of 86[OTf] with CO2 142 8.4. Experimental details for CHAPTER III 144 8.4.1 Synthesis of 105a,b[OTf] and 106c 144 8.4.1.1. General procedure for the reaction of fluorophosphonium triflate with Me3SiCN 144 8.4.1.2. Preparation of 105a[OTf] 144 8.4.1.3. Preparation of 105b[OTf] 145 8.4.1.4. Preparation of 106c 145 8.4.2. Reaction of fluorophosphonium triflate salt with Me3SiN3 146 8.4.2.1. General procedure for preparation of azidofluorophosphorane 146 8.4.2.2. General procedure for preparation of azidofluorophosphonium triflate salts 146 8.4.2.3. Preparation of 107a[OTf] 146 8.4.2.4. Preparation of 107b[OTf] 147 8.4.2.5. Preparation of 107c[OTf] 147 8.4.2.6. Preparation of 108c 148 8.4.2.7. Preparation of 109[OTf] 149 8.4.2.8. Preparation of 110[OTf]2 149 8.4.2.9. Preparation of 113[OTf]3 150 8.4.2.10. Preparation of 114[OTf] 151 8.4.2.11. Preparation of 115[OTf] 151 8.4.2.12. Preparation of 116[OTf] 152 8.4.3 Transformation of azido-fluorophosphorane under heating conditions 153 8.4.3.1 Preparation of 118 153 8.4.3.2 Preparation of 120a,b[OTf] 154 9. Crystallographic details 156 9.1. X-ray Diffraction refinements 156 9.2. Crystallographic details for CHAPTER I 157 9.3. Crystallographic details for CHAPTER II 169 9.4. Crystallographic details for CHAPTER III 176 10. Computational methods 179 11. Abbreviations 181 12. Nomenclature of compounds according to IUPAC recommendations 183 13. References 187 14. Acknowledgment 205 15. Publications and conference contributions 207 15.1. Peer-reviewed publication 207 15.2. Poster presentations 207 Versicherung 209 Erklärung 209
26

Processed small RNAs in Archaea and BHB elements

Berkemer, Sarah J., Höner zu Siederdissen, Christian, Amman, Fabian, Wintsche, Axel, Will, Sebastian, Hofacker, Ivo L., Prohaska, Sonja J., Stadler, Peter F. January 2015 (has links)
Bulge-helix-bulge (BHB) elements guide the enzymatic splicing machinery that in Archaea excises introns from tRNAs, rRNAs from their primary precursor, and accounts for the assembly of piece-wise encoded tRNAs. This processing pathway renders the intronic sequences as circularized RNA species. Although archaeal transcriptomes harbor a large number of circular small RNAs, it remains unknown whether most or all of them are produced through BHB-dependent splicing. We therefore conduct a genome-wide survey of BHB elements of a phylogenetically diverse set of archaeal species and complement this approach by searching for BHB-like structures in the vicinity of circularized transcripts. We find that besides tRNA introns, the majority of box C/D snoRNAs is associated with BHB elements. Not all circularized sRNAs, however, can be explained by BHB elements, suggesting that there is at least one other mechanism of RNA circularization at work in Archaea. Pattern search methods were unable, however, to identify common sequence and/or secondary structure features that could be characteristic for such a mechanism.
27

Metal/Organic/Inorganic Semiconductor Heterostructures Characterized by Vibrational Spectroscopies

Salvan, Georgeta 14 July 2003 (has links)
Im Rahmen dieser Arbeit werden zwei Perylen-Derivate als Zwischenschichten in Ag/organischen Schichten/GaAs(100)-Heterostrukturen eingesetzt, um den Einfluss von unterschiedlichen chemischen Endgruppen auf die chemischen und strukturellen Eigenschaften beider Grenzflächen, sowie auf die Morphologie, Struktur und Kristallinität von organischen Schichten zu charakterisieren. Die molekularen Schichten von 3,4,9,10-Perylentetracarbonsäure Dianhydrid (PTCDA) und Dimethyl-3,4,9,10-Perylentetracarbonsäure Diimid (DiMe-PTCDI) werden durch organische Molekularstrahldeposition (OMBD) im Ultrahochvakuum auf S-passivierten GaAs(100):2x1-Substraten hergestellt. Weiterhin wird der Einfluss des Substrats untersucht, indem PTCDA-Wachstum auf H-passiviertem Si(100):1x1 durchgeführt wird. Als Hauptcharakterisierungsmethode wird die Ramanspektroskopie eingesetzt. Diese ist eine nicht-destruktive Methode, die auch in situ Untersuchungen des Wachstumsprozesses ermöglicht. Die komplementäre Infrarotspektroskopie sowie die Rasterkraftmikroskopie, Rasterelektronenmikroskopie und Röntgenbeugung (XRD) werden zur Ergänzung des Verständnisses der Heterostruktureigenschaften verwendet. Die Empfindlichkeit von Raman- und Infrarot-Spektroskopien auf die chemisch unterschiedlichen Endgruppen wird durch experimentelle Untersuchungen an PTCDA- und DiMe-PTCDI-Kristallen, beziehungsweise dicken Schichten und mit Hilfe theoretischer Berechnungen nachgewiesen. So wird zum ersten Mal eine vollständige Zuordnung der Schwingunsfrequenzen zu den internen Schwingungsmoden von DiMe-PTCDI vorgeschlagen. Im niedrigen Frequenzbereich der Ramanspektren werden die externen molekularen Schwingungsmoden, oder molekularen „Phononen“, die eine Signatur der Kristallinität darstellen, beobachtet. Die Phononen von DiMe-PTCDI werden in dieser Arbeit zum ersten Mal in einem Ramanexperiment beobachtet. Mittels resonanter Ramanspektroskopie wird die Detektion von C-H-Deformationsmoden und C-C-Streckmoden sogar im Sub-Monolagenbereich molekularer Bedeckung auf Halbleiteroberflächen möglich. Anhand dieser Ramanspektren konnte die Art der Wechselwirkung zwischen Molekülen und passivierten Oberflächen näher charakterisiert werden. Zusätzliche Information bringen die GaAs LO- und Plasmon-gekoppelten LO- Phononen, deren Intensitätsverhältnis im Ramanspektrum die Bandverbiegung im GaAs-Substrat widerspiegelt. Die Kristallinität der hergestellten organischen Schichten mit Dicken größer als 2 nm wird durch Beobachtung der molekularen „Phononen“ nachgewiesen. Als allgemeine Tendenz konnte bewiesen werden, dass mit steigender Substrattemperatur während des Wachstums größere Kristalldomänen entstehen. Weiterhin wird eine Methode vorgeschlagen, um den Anteil von zwei PTCDA- Kristallphasen mit ähnlichen Gitterparametern anhand der Raman- beziehungsweise XRD-Spektren zu bestimmen. Durch ihre sehr gute Ordnung können die DiMe-PTCDI- Schichten als Modellsystem dienen, um eine Methode zu entwickeln, die die Molekülorientierung im Bezug zum Substrat aus polarisationsabhängigen Raman- und Infrarotmessungen bestimmt. Bei der Metall-Bedampfung wird die Empfindlichkeit der Ramanstreuung an internen molekularen Schwingungsmoden von PTCDA und DiMe-PTCDI-Schichten durch oberflächenverstärkte Ramanstreuung (SERS) erhöht. Anhand der unterschiedlichen Signalverstärkungsmechanismen werden Informationen über die Ag/Molekül- Wechselwirkung und die Morphologie der Ag-Schichten abgeleitet.
28

Theoretical investigation of excited states of C3 and pathways for the reaction C3+C3 = C6

Terentyev, Alexander Victorovich 01 June 2005 (has links)
For the astrophysically relevant molecules, C3 and C6, ab initio calculations are performed to study the geometries of different neutral isomers, the electronic structures of C3 in its ground and excited states, and possible pathways for the reaction C3 + C3 = C6. For C3 we present calculations for the potential energy surfaces of C3 in different electronic configurations, including the singlet ground state, the triplet ground state, and some higher excited states. The geometries studied include triangular shapes with two identical bond lengths, but different bond angles between them. For the singlet and triplet ground states in the linear geometry, the total energies resulting from the mixed density functional-Hartree-Fock and quadratic configuration interaction methods reproduce the experimental values, i.e. the triplet occurs 2.1 eV above the singlet. In the geometry of an equilateral triangle, we find a low-lying triplet state with an energy of only 0.8 eV above the energy of the singlet in the linear configuration, so that the triangular geometry yields the lowest excited state of C3. For the higher excited states up to about 12 eV above the ground state, we apply time-dependent density functional theory. Even though the systematic error produced by this approach is of the order of 0.4 eV, the results give new insight into the potential energy landscape for higher excitation energies. For C6 we consider the known linear states and the lowest state of monocyclic ring. The potential energy surfaces, were built for various pathways for the reaction C3 + C3 = C6. For this investigation we apply a mixed density functional-Hartree-Fock method which gives good results with respect to the experimental values and does not demand much computational time. We have considered collinear and symmetric non-linear as well as some non-symmetric collision schemes of two C3 subunits, producing the 1Ag states of a D2h isomer, one in a cyclic shape, the other in the form of two triangles connected by the corners, and for the non-symmetric scheme the 1A' state of a Cs isomer. To investigate the pathways for the creation of C6 from two C3 we emphasize the importance of the electron configuration for the reacting C3 subunits. As a result we have obtained the following rule: The stable linear as well as the cyclic C6 molecule can only be created in the case when at least one C3 has a partially filled orbital, requiring an excited state with respect to the singlet ground state of C3. / Für die astrophysikalisch bedeutenden Moleküle C3 und C6 werden ab initio Berechnungen von elektronischen Zuständen verschiedener Isomere durchgeführt. Basierend auf der Optimierung verschiedener neutraler Isomere von C3 im Grundzustand und mehreren angeregten Zuständen werden mögliche Wege für die Reaktion C3 + C3 = C6 studiert. Für C3 werden ab initio Berechnungen für die Flächen der potentiellen Energie in verschiedenen elektronischen Konfigurationen durchgeführt, einschließlich des Singulett-Grundzustands, des Triplett-Grundzustands, und einiger höherer Anregungszustände. Die untersuchten Geometrien schließen gleichschenklige Dreiecke mit zwei identischen Bindungslängen ein, wobei der Bindungswinkel dazwischen variiert wird. Die Gesamtenergien, die sich in einem gemischten Hartree-Fock-Dichtefunktional-Verfahren und unter Verwendung der quadratischen Konfigurationswechselwirkung ergeben, reproduzieren die experimentell beobachtete Energiedifferenz von 2.1 eV zwischen dem niedrigsten Triplett-Zustand und dem Singulett-Grundzustand. In der Geometrie des gleichseitigen Dreiecks ergibt sich ein niedrigerliegender Triplett-Zustand mit einer Energie von nur 0.8 eV über der Energie des Singuletts im linearen Isomer, so dass die dreieckige Geometrie den niedrigsten Anregungszustand von C3 ergibt. Für höhere Anregungsenergien bis zu 12 eV über dem Grundzustand wird zeitabhängige Dichtefunktional-Theorie zur Ermittlung der Energie angeregter elektronischer Konfigurationen eingesetzt. Obwohl der von dieser Methode produzierte systematische Fehler von der Größenordnung von 0.4 eV ist, ergeben sich interessante neue Einblicke in die Potentiallandschaft angeregter Zustände. Für C6 betrachten wir das bekannte lineare Isomer und das zyklische Isomer. Der Verlauf der Potentialoberflächen wird für verschiedene Reaktionspfade C3+C3 = C6 untersucht, wobei ein gemischtes Hartree-Fock-Dichtefunktional-Verfahren einesetzt wird. Im Mittelpunkt des Interesses stehen dabei kollineare Anordnungen linearer C3 Moleküle, symmetrische Kollisionen nichtlinearer Reaktanden, sowie einige nichtsymmetrische koplanare Geometrien des Zusammenstosses zweier linearer Moleküle. Als Ergebnis der Reaktionen mit symmetrischen Anordnungen ergibt sich lineares C6 oder zyklisches C6 mit D2h Symmetrie in einem elektronischen Zustand der höchsten Symmetrie 1Ag. Das nicht-symmetrische Reaktionsschema führt zu einem planaren Isomer Cs im Zustand 1A'. Um die Wege für die Bildung von C6 aus zwei C3 zu untersuchen, ist die elektronische Konfiguration der Reaktanden von entscheidender Bedeutung. Als Ergebnis erhält man die folgende Regel: sowohl ein stabiles lineares als auch ein zyklisches C6 Molekül können nur gebildet werden, wenn zumindest eines der C3 Moleküle ein teilweise gefülltes Orbital hat, wofür eine Anregung aus dem Singulett-Grundzustand heraus erforderlich ist.
29

Electronic Properties and Chemistry of Metal / Organic Semiconductor/ S-GaAs(100) Heterostructures

Gavrila, Gianina Nicoleta 21 October 2005 (has links)
Im Rahmen dieser Arbeit werden drei Perylen-Derivate als Zwischenschichten in Metall/organische Schicht/S-GaAs(100)-Heterostrukturen eingesetzt. Das Ziel dieser Arbeit ist, den Einfluss von unterschiedlichen chemischen Endgruppen auf die elektronischen und chemischen Eigenschaften der Grenzflächen, sowie auf die molekulare Orientierung in den organischen Schichten nachzuweisen. Die Moleküle 3,4,9,10-Perylentetracarbonsäure Dianhydrid (PTCDA), 3,4,9,10-PerylenTetraCarbonsäure DiImid (PTCDI) und Dimethyl-3,4,9,10-PerylenTetraCarbonsäure DiImid (DiMe-PTCDI) wurden durch organische Molekularstrahldeposition (OMBD) im Ultrahochvakuum auf Schwefel-passivierte GaAs(100):2x1-Substrate aufgedampft. Oberflächensensitive Charakterisierungsverfahren wie Photoemissionsspekroskopie (PES), Inverse Photoemissionsspektroskopie (IPES) und Nahkantenröntgenfeinstrukturmessungen (NEXAFS) wurden zur Charakterisierung eingesetzt. Theoretische Berechnungen mit Hilfe von Dichte-Funktional-Methoden wurden durchgeführt, um eine Zuordnung von verschiedenen Komponenten in Rumpfniveauspektren zu ermöglichen. Die NEXAFS-Messungen ermöglichen eine genaue Bestimmung der Molekülorientierung in Bezug zum Substrat. So lässt sich nachweisen, dass eine kleine Änderung von chemischen Endgruppen z.B. bei DiMe-PTCDI verglichen mit PTCDI, eine dramatische Änderung der Molekülorientierung hervorruft. Die Valenzbandspektren von DiMe-PTCDI zeigen eine energetische Dispersion von 0.2 eV, die auf eine -Orbital-Überlappung zurückzuführen ist und die Ausbildung von Valenzbändern belegt. Die Energieniveauanpassung an der organische Schicht/S-GaAs-Grenzfläche, sowie die Transport-Bandlücke von PTCDI, DiMe-PTCDI und PTCDA wurden mit Hilfe von PES und IPES bestimmt. Die elektronischen, chemischen und strukturellen Eigenschaften von Metall/Organische Schicht- Grenzflächen wurden mit Hilfe von Rumpfniveauspektroskopie und NEXAFS untersucht. Mg reagiert stark mit den Endgruppen von PTCDA und PTCDI, währenddessen die In-Atome an einem Ladungstransferprozess mit den Perylen-Kernen aller dreien Molekülen beteiligt sind, wobei der Betrag der transferierten Ladung maximal für den Fall von PTCDI wird. Während Mg sehr wenig in die organischen Schichten diffundiert, zeigt In sehr starke Eindiffusion in PTCDA-Schichten und schwache in PTCDI-Schichten.
30

Nonadiabatic quantum molecular dynamics with hopping. III. Photoinduced excitation and relaxation of organic molecules

Fischer, Michael, Handt, Jan, Schmidt, Rüdiger January 2014 (has links)
Photoinduced excitation and relaxation of organic molecules (C2H4 and CH2NH+2) are investigated by means of nonadiabatic quantum molecular dynamics with hopping (NA-QMD-H), developed recently [Fischer, Handt, and Schmidt, paper I of this series, Phys. Rev. A 90, 012525 (2014)]. This method is first applied to molecules assumed to be initially ad hoc excited to an electronic surface. Special attention is drawn to elaborate the role of electron-nuclear correlations, i.e., of quantum effects in the nuclear dynamics. It is found that they are essential for a realistic description of the long-time behavior of the electronic relaxation process, but only of minor importance to portray the short-time scenario of the nuclear dynamics. Migration of a hydrogen atom, however, is identified as a quantum effect in the nuclear motion. Results obtained with explicit inclusion of an fs-laser field are presented as well. It is shown that the laser-induced excitation process generally leads to qualitatively different gross features of the relaxation dynamics, as compared to the field-free case. Nevertheless, the nuclear wave packet contains all subtleties of the cis-trans isomerization mechanism as observed without a laser field.

Page generated in 0.036 seconds