Spelling suggestions: "subject:"biomoleküle"" "subject:"gasmoleküle""
31 |
Scanning tunneling microscopy on low dimensional systems: dinickel molecular complexes and iron nanostructuresSalazar Enríquez, Christian David 28 September 2016 (has links)
This thesis contains experimental studies on low dimensional systems by means of scanning tunneling microscopy (STM). These studies include investigations on dinickel molecular complexes and experiments on iron nanostructures used for the implementation of the spin-polarized scanning tunneling microscopy technique at the IFW-Dresden. Additionally, this work provides detailed information of the experimental technique (STM), from the theoretical background to the STM-construction, which was part of this doctoral work.
Molecular anchoring and electronic properties of macrocyclic magnetic complexes on gold surfaces have been investigated by mainly scanning tunneling microscopy and complemented by X-rays photoelectron spectroscopy. Exchange–coupled macrocyclic complexes [Ni2L(Hmba)]+ were deposited via 4-mercaptobenzoate ligands on the surface of Au(111) single crystals. The results showed the success of gold surface-grafted magnetic macrocyclic complexes forming large monolayers. Based on the experimental data, a growth model containing two ionic granular structures was proposed. Spectroscopy measurements suggest a higher gap on the cationic structures than on the anionic ones. Furthermore, the film stability was probed by the STM tip with long-term measurements. This investigation contributes to a new promising direction in the anchoring of molecular magnets to metallic surfaces.
Iron nanostructures of two atomic layers and iron-coated tungsten tips were used in order to implement the spin-polarized scanning tunneling microscopy technique at the IFW-Dresden. First of all, a systematic study of the iron growth, from sub-monolayers to multilayers on a W(110) crystal is presented. Subsequent to the well-understanding of the iron growth, the experiments were focused on revealing, for the first time at the IFW-Dresden, the magnetic inner structure of iron nanostructures. The results evidently showed the presence of magnetic domains of irregular shapes. Furthermore, SP-STM probed the bias voltage dependence of the magnetic contrast on the iron nanostructures. This technique opens up a new powerful research line at the IFW-Dresden which is promising for the study of quantum materials as molecular magnets and strongly correlated systems.
|
32 |
Topological defect-induced magnetism in a nanographeneMishra, Shantanu, Beyer, Doreen, Berger, Reinhard, Liu, Junzhi, Gröning, Oliver, Urgel, José I., Müllen, Klaus, Ruffieux, Pascal, Feng, Xinliang, Fasel, Roman 13 January 2021 (has links)
The on-surface reactions of 10-bromo-10'-(2,6-dimethylphenyl)-9,9'-bianthracene on Au(111) surface have been investigated by a combination of bond-resolved scanning tunneling microscopy, scanning tunneling spectroscopy, and tightbinding and mean-field Hubbard calculations. The reactions afford the synthesis of two open-shell nanographenes (1a and 1b) exhibiting different scenarios of all-carbon magnetism. 1a, an allbenzenoid nanographene with previously unreported triangulenelike termini, contains a high proportion of zigzag edges, which endows it with an exceedingly low frontier gap of 110 meV and edge-localized states. The dominant reaction product (1b) is a non-benzenoid nanographene consisting of a single pentagonal ring in a benzenoid framework. The presence of this nonbenzenoid topological defect, which alters the bond connectivity in the hexagonal lattice, results in a non-Kekulé nanographene with a spin S = ½, which is detected as a Kondo resonance. Our work provides evidence of all-carbon magnetism, and motivates the use of topological defects as structural elements toward engineering agnetism in carbon-based nanomaterials for spintronics.
|
33 |
Spectroscopic Studies of the Interfaces Between Molecules and Ferromagnetic SubstratesGuo, Jing 14 December 2018 (has links)
Die große Vielfalt an organischen Komplexen, kombiniert mit der Möglichkeit, die chemische Reaktivität und den elektronischen Grundzustand unterschiedlicher Komplexe innerhalb derselben Molekülfamilie abzustimmen, machen solche Materialien für elektronische Anwendungen attraktiv. Auf Grund ihrer langen Spin-Lebensdauer sind Moleküle auch für Spintronik-Anwendungen sehr geeignet.
In dieser Arbeit werden die Grenzflächen zwischen organischen Halbleitern und Metallen sowie zwei organischen Halbleitern durch spektroskopische Techniken untersucht. Das erste Kapitel beinhaltet eine allgemeine Einführung zu organischen Halbleitern und Eigenschaften von Grenzflächen. Im experimentellen Teil werden die untersuchten Moleküle und verwendeten Messmethoden detailliert vorgestellt. Der dritte Teil dieser Arbeit zeigt die Auswirkung verschiedener Substrate (Co und Ni) oder Molekülkombinationen (CoPc und FePc) auf die Wechselwirkungs- und Ladungsübertragungskanäle. In dem nachfolgenden Teil werden elektronische Zustände und Wechselwirkungen an Organik-Organik Grenzflächen am Beispiel von VOPc/F16CuPc und F16CoPc/rubren diskutiert. Der letzte Teil dieser Arbeit zeigt, wie die Eigenschaften der Substrate und die Modifikation der Moleküle die molekulare Orientierung beeinflussen können.
|
34 |
Zwei-Photonen-Kreuzkorrelations-Spektroskopie : Nachweis der Interaktionen einzelner Moleküle in der lebenden ZelleSchwille, Petra 31 August 2007 (has links)
The progress of miniaturisation towards the nanoscopic scale in science and technology has also influenced the biosciences. This is particularly important, since proteins, as the smallest functional units of life, exhibit a spectacular wealth of functionalities, enabling them to fulfil complex tasks in cells and organisms. For this reason, they are often termed molecular or cellular “machines”. To be able to investigate and better understand these fascinating molecules in their native environment, new analytical methods must be developed, with appropriately high sensitivity and spatial and temporal resolution. We describe one very promising technique based on fluorescence spectroscopy, which allows a quantitative analysis of protein- protein interactions in the live cell. / Die zunehmende Miniaturisierung bis hin zum nanoskopischen Maßstab in vielen technischen Disziplinen hat auch die Lebenswissenschaften ergriffen. Dies ist insofern von großer Bedeutung, als die Proteine als kleinste funktionale Einheiten des Lebens trotz ihrer winzigen Abmessungen eine faszinierende Komplexität aufweisen, die es ihnen erlauben, hoch differenzierte und spezialisierte Aufgaben in der Zelle und im Organismus zu übernehmen. Aus diesem Grund werden sie in der modernen Biologie auch als molekulare oder zelluläre „Maschinen“ bezeichnet. Um diese kleinen Wunderwerke zu studieren und ihre Funktionsweise in ihrer natürlichen Umgebung zu analysieren, bedarf es innovativer Technologien, die es erlauben, mit maximaler räumlicher und zeitlicher Auflösung auch einzelne Moleküle in der lebenden Zelle sichtbar zu machen und zu verfolgen. Im Folgenden wird eine von uns entwickelte fluoreszenzspektroskopische Methode vorgestellt, mit deren Hilfe die komplizierten Interaktionen zwischen Proteinen in der lebenden Zelle aufgeklärt werden können.
|
35 |
Ultracold Rydberg Atoms in Structured and Disordered EnvironmentsLiu, Ivan Chen-Hsiu 03 November 2008 (has links)
The properties of a Rydberg atom immersed in an ultracold environment were investigated. Two scenarios were considered, one of which involves the neighbouring ground-state atoms arranged in a spatially structured configuration, while the other involves them distributed randomly in space. To calculate the influence of the multiple ground-state atoms on the Rydberg atom, Fermi-pseudopotential was used, which simplified greatly the numerical effort. In many cases, the few-body interaction can be written down analytically which reveals the symmetry properties of the system. In the structured case, we report the first prediction of the formation of ``Rydberg Borromean trimers''. The few-body interactions and the dynamics of the linear A-B-A trimer, where A is the ground-state atom and B is the Rydberg atom, were investigated in the framework of normal mode analysis. This exotic ultralong-range triatomic bound state exists despite that the Rydberg-ground-state interaction is repulsive. Their lifetimes were estimated using both quantum scattering calculations and semi-classical approximations which are found to be typically sub-microseconds. In the disordered case, the Rydberg-excitation spectra of a frozen-gas were simulated, where the nuclear degrees of freedom can be ignored. The systematic change of the spectral shape with respect to the density of the gas and the excitation of the Rydberg atom were found and studied. Some parts of the spectral shape can be described by simple scaling laws with exponents given by the basic properties of the atomic species such as the polarizability and the zero-energy electron-atom scattering length.
|
36 |
From Molecular Parameters to Electronic Properties of Organic Thin Films: A Photoelectron Spectroscopy StudySchwarze, Martin 28 March 2019 (has links)
The field of organic semiconductors considerably gained research interest due to promising applications in flexible, large-area, lightweight and semitransparent electronic devices, such as light-emitting diodes, solar cells, or transistors. The working mechanism of such devices depends on the combination of different neat or blended organic films, whose physical properties substantially differ from those of inorganic semiconductors. Weak intermolecular electronic coupling and large energetic disorder result in a thermally activated charge carrier hopping between localized electronic states. Therefore, many processes in organic devices are determined by properties of single molecules. The major goal of this thesis is to disclose relationships between electronic properties of organic thin films and molecular parameters, helping to provide specific design rules for new molecules.
In the first part of this thesis, the impact of molecular quadrupole moments on the transport energies of charge carriers is investigated by photoelectron spectroscopy. The results reveal for a variety of planar small molecules that charge-quadrupole interactions along the pi-pi-stacking geometry induce large energy changes with molecular orientation at surfaces and interfaces of crystalline films. Furthermore, these electrostatic interactions enable a continuous tuning of energy levels in crystalline intermixed blends by more than 1 eV. In blends exhibiting separated phases, quadrupole moments induce electrostatic gradients from the interface to the bulk phase. These two effects are exploited in organic solar cells consisting of a ternary blend of two intermixed donors blended with one acceptor. By changing the mixing ratio of the two donors, the open-circuit voltage can be continuously tuned. Additionally, the dissociation barrier of electron-hole pairs at the interface can be varied, reflecting in a change in photocurrent.
In the second part, molecular n-doping is investigated, facing the particular issue of air sensitivity. The analysis of two air stable precursor molecules of n-dopants reveals very good doping properties after their thermal evaporation, partly even better than for a reference air sensitive dopant. For high doping concentrations, temperature-dependent conductivity measurements show that the thermal activation energy of many compounds can be described by an empirical function of two molecular parameters, the relaxation energy of matrix anions and the Coulomb binding energy of integer charge transfer complexes (ICTCs) between matrix anions and dopant cations. The investigation of the density of states indicates that charge transport at high doping concentrations predominantly occurs by a rearrangement between different ICTC configurations and is limited by their energetic disorder, which can be reduced substantially by adding electron withdrawing side groups to the matrix molecules. The exposure of several n-doped semiconductors to air reveals that the air stability increases with larger ionization energies of ICTCs. This effect is attributed to an universal trap introduced upon air exposure. Its energy is estimated to be 3.9 eV, setting a general limit for air stable n-doping. / Organische Halbleiter bieten vielversprechende Anwendungsmöglichkeiten in ultraleichten, flexiblen, großflächigen und semitransparenten elektronischen Bauteilen wie beispielsweise in Leuchtdioden, Solarzellen oder Transistoren. Die Funktionsweise solcher Bauteile basiert auf der Kombination verschiedener organischer Moleküle in dünnen Schichten, deren physikalische Eigenschaften sich stark von herkömmlichen anorganischen Halbleitern unterscheiden. Die schwache elektronische Kopplung zwischen einzelnen Molekülen und die große energetische Unordnung in organischen Halbleitern bewirken einen temperaturaktivierten Transport von Ladungsträgern zwischen lokalisierten elektronischen Zuständen. Daher werden viele Prozesse in organischen Halbleiterbauelementen von molekularen Eigenschaften bestimmt. Das Hauptziel dieser Dissertation ist es, verschiedene elektronische Eigenschaften dünner organischer Filme mit molekularen Parametern in Verbindung zu bringen, was als Grundlage für die gezielte Entwicklung neuer Moleküle dienen soll.
Im ersten Teil dieser Arbeit wird mittels Photoelektronenspektroskopie der Einfluss molekularer Quadrupolmomente auf die Transportenergien von Ladungsträgern untersucht. Für eine große Anzahl verschiedener planarer Moleküle zeigt sich, dass die Wechselwirkung von Ladungen mit Quadrupolmomenten entlang der pi-pi-Stapelrichtung große Veränderungen der Energieniveaus an der Oberfläche und der Grenzfläche von kristallinen Filmen bewirkt, beispielsweise wenn sich die Molekülorientierung ändert. Dieser elektrostatische Effekt ermöglicht es, die Energieniveaus in einer homogen durchmischten Schicht zweier Molekülarten kontinuierlich über eine Größenordnung von mehr als 1 eV durchzustimmen. In Mischungen mit einer Phasentrennung können molekulare Quadrupolmomente einen elektrostatischen Gradienten an der Grenzfläche zwischen den Phasen ausbilden. Diese beiden Effekte werden in Solarzellen ausgenutzt, die aus einer Mischung von zwei Donatormolekülen und einem Akzeptormolekül bestehen. Durch Variation des Mischverhältnisses der zwei Donatoren lässt sich die Leerlaufspannung kontunierlich anpassen. Zusätzlich lässt sich die Energiebarriere für die Ladungsträgertrennung an der Grenzfläche reduzieren, was zu einem höheren Photostrom führt.
Im zweiten Teil wird molekulare n-Dotierung untersucht, bei der das spezielle Problem der Luftsensitivität berücksichtigt werden muss. Zwei luftstabile Ausgangsmoleküle von n-Dotanden weisen nach ihrer thermischen Verdampfung sehr gute Dotiereigenschaften auf, welche für ein Molekül sogar besser als bei entsprechenden luftsensitiven Referenzdotanden sind. Temperaturabhängige Leitfähigkeitsmessungen zeigen, dass die thermische Aktivierungsenergie bei hohen Dotierkonzentrationen durch eine empirische Funktion von zwei molekularen Parametern beschrieben werden kann, welche die Relaxationsenergie von Anionen des Matrixmoleküls und die Coulombbindungsenergie des Ionenpaars aus Matrix- und Dotandenmolekül sind. Die Untersuchung der Zustandsdichte dieser hochdotierten Halbleiter deutet darauf hin, dass sich der Ladungstransport durch eine Umbesetzung dieser Ionenpaare beschreiben lässt. Der Transport ist dabei durch die energetische Unordnung der Ionenpaare limitiert, welche sich allerdings durch das Hinzufügen von elektronenziehenden Seitengruppen an die Matrixmoleküle deutlich reduzieren lässt. Der Kontakt verschiedener n-dotierter Halbleiter mit Luft zeigt, dass sich die Luftstabilität dieser mit größerer Ionisationsenergie der Anionen des Matrixmaterials verbessert. Diese Beobachtung wird dadurch erklärt, dass durch den Kontakt mit Luft ein universeller Fallenzustand mit der Energie von 3.9 eV entsteht. Dieser setzt eine allgemeine Grenze für luftstabile n-Dotierung.
|
37 |
Aktivierung kleiner Moleküle mit Metallsiloxid KomplexenBeckmann, Fabian 21 February 2023 (has links)
In dieser Arbeit sollten Metallsiloxidkomplexe als potentielle Modellsysteme für metallbeladene Zeolithe, die in der Oxidationskatalyse eingesetzt werden, detailliert untersucht werden. Für Ti und Cu stand dabei die Entwicklung einer Syntheseroute im Vordergrund. Im Falle von Ti sollte TiCl4 mit Silanol PhSi(OSiPh2OH)3 (PhLH3) umgesetzt werden, während für Cu ein Kupfer(I)aluminosilikat synthetisiert werden sollte. Nach erfolgreicher Darstellung und Charakterisierung sollte deren Verhalten gegenüber Oxidanzien untersucht werden. Der Cu(I)-Komplex schien inert gegenüber O2 und OAT-Reagenzien, während bei der Reaktion der Ti-Komplexe mit H2O2 eine kurzlebige Spezies, vermutlich Ti−OOH, gebildet worden war. Der Komplex [Al3(µ2-OH)3(THF)3PhL2] wurde als Modell für Al−OH−Al Funktionen getestet und es zeigte sich, dass die sauren Al−OH−Al Funktionen in der Lage sind, Alkohole zu protonieren, diese unter Wasserabspaltung in Al−OR−Al Einheiten und anschließend durch beta-H-Eliminierung in verschiedene Olefine zu überführen. Zudem wurde die Azidität mit 15N-Festkörper-NMR-Spektroskopie des Pyridinaddukts untersucht. Der Komplex [L2Fe][Li(THF)2]2 (L = OSiR2OSiR2O, R = Ph) ist das beste Modell für Fe-ZSM-5 und sollte auf dessen O2-Reaktivität untersucht werden. Zum einen sollte der Einfluss des Ligandenrückgrats analysiert werden. Dafür wurden verschiedene Reste (R = Me, iPr, Ph'') verwendet und in einigen Fällen konnte das Phänomen der Allogonisomerie beobachtet werden. Zum anderen sollte der Einfluss der Alkalimetallionen bestimmt werden. Es stellte sich heraus, dass mit zunehmendem Ionenradius eine zunehmende Verzerrung der FeO4-Einheit in Richtung Tetraeder einhergeht. Diese Verzerrung wiederum spiegelte sich in der Zunahme von Delta-EQ und der Reaktionsgeschwindigkeit mit O2 wider. Neben Fe(II)- sollten auch Fe(III)-Komplexe synthetisiert werden. Zu guter Letzt sollte der Einfluss der an den Alkalimetall-Gegenionen koordinierenden Lösungsmitteln untersucht werden. / For the present study metal siloxid complexes considered as model systems for metal loaded zeolites, were investigated. For Ti and Cu, the focus was on developing a synthesis route. In the case of Ti, TiCl4 should therefore be reacted with silanol PhSi(OSiPh2OH)3 (PhLH3), while for Cu a copper(I)aluminosilicate should be synthesized. After the preparation and characterization their behavior towards oxidants was investigated. The Cu(I) complex appeared to be inert towards O2 and OAT reagents. During the reaction of the Ti complexes with H2O2 a reactive species was produced, probably Ti−OOH. The complex [Al3(µ2-OH)3(THF)3PhL2] was tested as a model for Al−OH−Al functions. It was shown that the acidic Al−OH−Al functions can protonate alcohols, thereby initiates the conversion into Al−OR−Al units under release of water and subsequently form different olefins through beta-H elimination. In addition, the acidity was investigated by 15N solid-state NMR spectroscopy of the pyridin adduct. The compound [L2Fe][Li(THF)2]2 (L = OSiR2OSiR2O, R = Ph) is the so far best model for Fe-ZSM-5 and a should be investigated with respect to the O2 reactivity. On the one hand, the influence of the ligand backbone was analyzed. For this purpose different residues (R = Me, iPr, Ph'') were used and in some cases the phenomenon of allogonisomerism was observed. On the other hand, the influence of the alkali metal ions should be investigated. It turned out that increasing ion radius was accompanied by an increasing distortion of the FeO4 unit in the direction of the tetrahedron. This distortion was reflected by an increasing Delta-EQ and reaction rate with O2. In addition to Fe(II)- Fe(III) complexes should be synthesized, too. Finally, the influence of the solvent molecules coordinated to the alkali metal counterions should be investigated.
|
38 |
Infrared Absorber Materials in Organic Small Molecule Solar Cells / Infrarotabsorber in Organischen OligomersolarzellenMüller, Toni 08 September 2015 (has links) (PDF)
Broadening the spectrum available to solar cells towards infrared wavelengths is one way to increase efficiency of organic solar devices. This thesis explores the possibilities of these organic heterojunction devices and two different material classes in thin films and organic solar devices: tin phthalocyanines (SnPcs) and aza-bodipys.
To estimate the efficiency reachable under sunlight, model calculations are done for single and tandem cells. These calculations include a distinction between the optical gap and the electrical gap and the splitting of the quasi-Fermi levels. With a number of assumptions, e.g. a fill factor (FF) and an external quantum efficiency (EQE) within the absorption range of 65%, the resulting efficiencies are 15% in a single cell and of 21% in a tandem cell.
Halogenation is known to lower the energy levels of molecules without chang-ing the optical band gap. Three different fluorinated and chlorinated SnPcs are investigated and compared to the neat SnPc. While chlorination of SnPc worsens the transport properties of the active layer leading to a lowered FF, the fluorina-tion of SnPc results in the intended increase in VOC and, consequently, efficiency for planar heterojunctions. In bulk heterojunction, however, fluorination does not change the efficiency probably due to the unstably bound fluorine.
One method to modify the ionization potential (IP) and the absorption of the second material class, the aza-bodipys, is the annulation of the benzene ring. The energy levels determined by CV and UPS measurement and DFT-calculation show very good agreement and can be linked to a decrease in VOC: The Ph4-bodipy (not benzannulated) device has an efficiency of 1.2% with an EQE reaching up to 800nm and a VOC of almost 1V. The Ph2-benz-bodipy device shows a Voc of 0.65V and an efficiency of 1.1%, the EQE reaching up to 860nm.
The variation of the molecule’s end groups to vary their IP is successfully employed for three different benz-bodipys: The variation results in a decrease of the optical gap from 1.5eV for the phenyl group, to 1.4eV for the MeO group, and 1.3eV for the thiophene group with the effective gap and the VOC following this trend. Efficiencies of 1.1% and 0.6% in combination with C60 can be reached in mip-type devices. Ph2-benz-bodipy is then optimized into a single cell with an efficiency of 2.9%. In a tandem cell with DCV6T-Bu4:C60, a Voc of 1.7V, a FF of 57% and an efficiency of 5% is reached. / Die Erweiterung des verfügbaren Spektrums in den Infrarotbereich ist eine Möglichkeit, die Effizienz organischer Solarzellen zu erhöhen. Diese Arbeit erkundet das Potential dieser Heteroübergänge und zwei Materialklassen in dünnen Schichten und Bauelementen: Zinnphthalozyanine (SnPc) und aza-Bodipys.
Um die potentielle Effizienz abzuschäötzen, werden Modellberechnungen für Einzel- und Tandemzellen durchgeführt, unter Berücksichtigung des Unterschieds von optischer und elektrischer Bandlücke und der Quasiferminiveauaufspaltung. Mithilfe einiger Annahmen (z.B. Füllfaktor (FF) und externe Quanteneffizienz (EQE) gleich 65%) lässt sich die Einzelzelleffizienz auf 15%, die Tandemzelleffizienz auf 21% abschätzen.
Halogenierung kann die Energieniveaus organischer Moleküle herabsetzen, ohne die optische Bandlücke zu verändern. Drei verschiedene chlorierte und fluorierte SnPcs werden mit dem reinen SnPc verglichen. Während die Chlorierung die Transporteigenschaften der aktiven Schicht und den FF verschlechtern, erhöht die Fluorierung wie erwartet Leerlaufspannung (VOC) und Effizienz im flachen Übergang, nicht jedoch in der Mischschicht, vermutlich aufgrund des nicht stabil gebundenen Fluors.
Ein Weg, Ionisationspotential (IP) und Absorption der aza-Bodipy zu verändern, ist die Anelierung des Benzenrings. Die durch CV und UPS ermittelten und mittels DFT errechneten Energieniveaus stimmen gut überein und führen zu einer Verringerung der VOC: Die Zelle mit nichtaniliertem Ph4-bodipy zeigt eine Effizienz von 1.2%; das EQE reicht bis 800nm, die VOC beträgt fast 1V. Die Ph2-benz-bodipy-Zelle zeigt eine VOC von 0.65V und eine Effizienz von 1.1%, das EQE reicht bis 860nm.
Der Austausch der Endgruppen zur Vergrößerung des IP, erfolgreich angewandt auf drei Benz-Bodipy-Verbindungen, führt zu einer Verringerung der optischen Bandlücke: von 1.5eV (Phenyl) über 1.4eV (MeO) zu 1.3eV (Thiophen); effektive Bandlücke und Voc folgen diesem Trend. Effizienzen von 1.1% und 0.6% in Kombination mit C60 werden in mip-Zellen erreicht. Ph2-benz-bodipy zeigt in einer optimierten nip-Zelle sogar eine Effizienz von 2.9%. Eine Tandemzelle mit DCV6T-Bu4:C60 zeigt eine Voc von 1.7V, einen FF von 57% und eine Effizienz von 5%.
|
39 |
Infrared Absorber Materials in Organic Small Molecule Solar CellsMüller, Toni 24 August 2015 (has links)
Broadening the spectrum available to solar cells towards infrared wavelengths is one way to increase efficiency of organic solar devices. This thesis explores the possibilities of these organic heterojunction devices and two different material classes in thin films and organic solar devices: tin phthalocyanines (SnPcs) and aza-bodipys.
To estimate the efficiency reachable under sunlight, model calculations are done for single and tandem cells. These calculations include a distinction between the optical gap and the electrical gap and the splitting of the quasi-Fermi levels. With a number of assumptions, e.g. a fill factor (FF) and an external quantum efficiency (EQE) within the absorption range of 65%, the resulting efficiencies are 15% in a single cell and of 21% in a tandem cell.
Halogenation is known to lower the energy levels of molecules without chang-ing the optical band gap. Three different fluorinated and chlorinated SnPcs are investigated and compared to the neat SnPc. While chlorination of SnPc worsens the transport properties of the active layer leading to a lowered FF, the fluorina-tion of SnPc results in the intended increase in VOC and, consequently, efficiency for planar heterojunctions. In bulk heterojunction, however, fluorination does not change the efficiency probably due to the unstably bound fluorine.
One method to modify the ionization potential (IP) and the absorption of the second material class, the aza-bodipys, is the annulation of the benzene ring. The energy levels determined by CV and UPS measurement and DFT-calculation show very good agreement and can be linked to a decrease in VOC: The Ph4-bodipy (not benzannulated) device has an efficiency of 1.2% with an EQE reaching up to 800nm and a VOC of almost 1V. The Ph2-benz-bodipy device shows a Voc of 0.65V and an efficiency of 1.1%, the EQE reaching up to 860nm.
The variation of the molecule’s end groups to vary their IP is successfully employed for three different benz-bodipys: The variation results in a decrease of the optical gap from 1.5eV for the phenyl group, to 1.4eV for the MeO group, and 1.3eV for the thiophene group with the effective gap and the VOC following this trend. Efficiencies of 1.1% and 0.6% in combination with C60 can be reached in mip-type devices. Ph2-benz-bodipy is then optimized into a single cell with an efficiency of 2.9%. In a tandem cell with DCV6T-Bu4:C60, a Voc of 1.7V, a FF of 57% and an efficiency of 5% is reached.:1 Introduction 13
2 Physics of Organic Solids 15
2.1 Organic Molecular Crystals . . . . . . . . . . . . . . . . . . . . . 15
2.1.1 Delocalization in Conjugated Systems . . . . . . . . . . . . 16
2.2 Energies and Excitations . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Organic Molecules . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Organic Solids . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Charge Carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Doping of Organic Semiconductors . . . . . . . . . . . . . 26
3 Physics of Photovoltaics 29
3.1 Photovoltaics in General 29
3.1.1 pn-Junction 31
3.1.2 Quasi-Fermi Levels . . . . . . . . . . . . . . . . . . . . . . 37
3.1.3 pin-Concept - Semipermeable Membranes . . . . . . . . . 40
3.1.4 Efficiency Limits . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Organic Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.1 Organic Heterojunctions . . . . . . . . . . . . . . . . . . . 45
3.2.2 Recombination Processes . . . . . . . . . . . . . . . . . . . 50
3.2.3 Transport Layers – pin-Concept in OSC . . . . . . . . . . 52
4 Materials and Experimental Setups 57
4.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.1 Buckminsterfullerene C60 . . . . . . . . . . . . . . . . . . . 57
4.1.2 Transport Materials . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.1 Characterization of Thin Layers . . . . . . . . . . . . . . . 65
4.3.2 Characterization of Solar Cells . . . . . . . . . . . . . . . . 69
4 Contents
5 Efficiency of an Organic Solar Cell 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.1 The Power Conversion Efficiency . . . . . . . . . . . . . . 76
5.2.2 Optical Gap and Short-Circuit Current Density . . . . . . 76
5.2.3 Open-Circuit Voltage and Splitting of Quasi-Fermi Levels . 77
5.3 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.1 Single Heterojunction Solar Cells . . . . . . . . . . . . . . 79
5.3.2 Tandem Heterojunction Solar Cells . . . . . . . . . . . . . 80
5.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6 Tin Phthalocyanines in Organic Solar Cells 83
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Material Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.1 Planar Heterojunctions . . . . . . . . . . . . . . . . . . . . 89
6.3.2 Bulk Heterojunctions . . . . . . . . . . . . . . . . . . . . . 91
6.3.3 Photoelectron Spectroscopy . . . . . . . . . . . . . . . . . 95
6.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7 Benzannulation of Aza-Bodipy Dyes 97
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2 Properties of Bodipys . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2.1 Chemical Preparation . . . . . . . . . . . . . . . . . . . . 99
7.2.2 Solution and Thin Film Properties . . . . . . . . . . . . . 99
7.3 Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8 Effect of End Group Variation on Aza-Bodipy Dyes 111
8.1 Thin Film Properties . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.1.1 Optical Properties . . . . . . . . . . . . . . . . . . . . . . 112
8.1.2 Energetic Properties . . . . . . . . . . . . . . . . . . . . . 113
8.1.3 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.2 Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9 Optimization of Infrared Absorbing Organic Solar Cells 123
9.1 Optimization of the Single Cell . . . . . . . . . . . . . . . . . . . 123
9.1.1 Optimized Single Device . . . . . . . . . . . . . . . . . . . 128
9.1.2 Device Lifetime . . . . . . . . . . . . . . . . . . . . . . . . 129
9.2 Tandem Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.2.1 Summary and Outlook . . . . . . . . . . . . . . . . . . . . 136
10 Summary and Outlook 139
Bibliography 145
List of Abbreviations 165
Acknowledgments 167 / Die Erweiterung des verfügbaren Spektrums in den Infrarotbereich ist eine Möglichkeit, die Effizienz organischer Solarzellen zu erhöhen. Diese Arbeit erkundet das Potential dieser Heteroübergänge und zwei Materialklassen in dünnen Schichten und Bauelementen: Zinnphthalozyanine (SnPc) und aza-Bodipys.
Um die potentielle Effizienz abzuschäötzen, werden Modellberechnungen für Einzel- und Tandemzellen durchgeführt, unter Berücksichtigung des Unterschieds von optischer und elektrischer Bandlücke und der Quasiferminiveauaufspaltung. Mithilfe einiger Annahmen (z.B. Füllfaktor (FF) und externe Quanteneffizienz (EQE) gleich 65%) lässt sich die Einzelzelleffizienz auf 15%, die Tandemzelleffizienz auf 21% abschätzen.
Halogenierung kann die Energieniveaus organischer Moleküle herabsetzen, ohne die optische Bandlücke zu verändern. Drei verschiedene chlorierte und fluorierte SnPcs werden mit dem reinen SnPc verglichen. Während die Chlorierung die Transporteigenschaften der aktiven Schicht und den FF verschlechtern, erhöht die Fluorierung wie erwartet Leerlaufspannung (VOC) und Effizienz im flachen Übergang, nicht jedoch in der Mischschicht, vermutlich aufgrund des nicht stabil gebundenen Fluors.
Ein Weg, Ionisationspotential (IP) und Absorption der aza-Bodipy zu verändern, ist die Anelierung des Benzenrings. Die durch CV und UPS ermittelten und mittels DFT errechneten Energieniveaus stimmen gut überein und führen zu einer Verringerung der VOC: Die Zelle mit nichtaniliertem Ph4-bodipy zeigt eine Effizienz von 1.2%; das EQE reicht bis 800nm, die VOC beträgt fast 1V. Die Ph2-benz-bodipy-Zelle zeigt eine VOC von 0.65V und eine Effizienz von 1.1%, das EQE reicht bis 860nm.
Der Austausch der Endgruppen zur Vergrößerung des IP, erfolgreich angewandt auf drei Benz-Bodipy-Verbindungen, führt zu einer Verringerung der optischen Bandlücke: von 1.5eV (Phenyl) über 1.4eV (MeO) zu 1.3eV (Thiophen); effektive Bandlücke und Voc folgen diesem Trend. Effizienzen von 1.1% und 0.6% in Kombination mit C60 werden in mip-Zellen erreicht. Ph2-benz-bodipy zeigt in einer optimierten nip-Zelle sogar eine Effizienz von 2.9%. Eine Tandemzelle mit DCV6T-Bu4:C60 zeigt eine Voc von 1.7V, einen FF von 57% und eine Effizienz von 5%.:1 Introduction 13
2 Physics of Organic Solids 15
2.1 Organic Molecular Crystals . . . . . . . . . . . . . . . . . . . . . 15
2.1.1 Delocalization in Conjugated Systems . . . . . . . . . . . . 16
2.2 Energies and Excitations . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Organic Molecules . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Organic Solids . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Charge Carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Doping of Organic Semiconductors . . . . . . . . . . . . . 26
3 Physics of Photovoltaics 29
3.1 Photovoltaics in General 29
3.1.1 pn-Junction 31
3.1.2 Quasi-Fermi Levels . . . . . . . . . . . . . . . . . . . . . . 37
3.1.3 pin-Concept - Semipermeable Membranes . . . . . . . . . 40
3.1.4 Efficiency Limits . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Organic Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.1 Organic Heterojunctions . . . . . . . . . . . . . . . . . . . 45
3.2.2 Recombination Processes . . . . . . . . . . . . . . . . . . . 50
3.2.3 Transport Layers – pin-Concept in OSC . . . . . . . . . . 52
4 Materials and Experimental Setups 57
4.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.1 Buckminsterfullerene C60 . . . . . . . . . . . . . . . . . . . 57
4.1.2 Transport Materials . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.1 Characterization of Thin Layers . . . . . . . . . . . . . . . 65
4.3.2 Characterization of Solar Cells . . . . . . . . . . . . . . . . 69
4 Contents
5 Efficiency of an Organic Solar Cell 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.1 The Power Conversion Efficiency . . . . . . . . . . . . . . 76
5.2.2 Optical Gap and Short-Circuit Current Density . . . . . . 76
5.2.3 Open-Circuit Voltage and Splitting of Quasi-Fermi Levels . 77
5.3 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.1 Single Heterojunction Solar Cells . . . . . . . . . . . . . . 79
5.3.2 Tandem Heterojunction Solar Cells . . . . . . . . . . . . . 80
5.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6 Tin Phthalocyanines in Organic Solar Cells 83
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Material Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.1 Planar Heterojunctions . . . . . . . . . . . . . . . . . . . . 89
6.3.2 Bulk Heterojunctions . . . . . . . . . . . . . . . . . . . . . 91
6.3.3 Photoelectron Spectroscopy . . . . . . . . . . . . . . . . . 95
6.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7 Benzannulation of Aza-Bodipy Dyes 97
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2 Properties of Bodipys . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2.1 Chemical Preparation . . . . . . . . . . . . . . . . . . . . 99
7.2.2 Solution and Thin Film Properties . . . . . . . . . . . . . 99
7.3 Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8 Effect of End Group Variation on Aza-Bodipy Dyes 111
8.1 Thin Film Properties . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.1.1 Optical Properties . . . . . . . . . . . . . . . . . . . . . . 112
8.1.2 Energetic Properties . . . . . . . . . . . . . . . . . . . . . 113
8.1.3 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.2 Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9 Optimization of Infrared Absorbing Organic Solar Cells 123
9.1 Optimization of the Single Cell . . . . . . . . . . . . . . . . . . . 123
9.1.1 Optimized Single Device . . . . . . . . . . . . . . . . . . . 128
9.1.2 Device Lifetime . . . . . . . . . . . . . . . . . . . . . . . . 129
9.2 Tandem Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.2.1 Summary and Outlook . . . . . . . . . . . . . . . . . . . . 136
10 Summary and Outlook 139
Bibliography 145
List of Abbreviations 165
Acknowledgments 167
|
40 |
Von der Infektion zur AutoimmunitätSiffrin, Volker 27 April 2005 (has links)
Epidemiologische Daten belegen eine Assoziation von Infektionen mit der Exazerbation von Autoimmunerkrankungen, wobei man aber die Wege, die dahin führen noch nicht voll versteht. Die gängigste Hypothese sieht die Ursache für die Entstehung von Autoimmunerkrankungen in der Kreuzreaktivität zwischen mikrobiellen und Selbst-Antigenen, die von der selben T-Zelle erkannt werden. Dieser Antigen-spezifische Mechanismus konnte allerdings bisher nicht durch die Forschung belegt werden. In dieser Arbeit wird gezeigt, dass im Modell der experimentellen autoimmunen Enzephalitis durch die Aktivierung mit Lipopolysacchariden gramnegativer Bakterien (LPS) Schübe in normalen Mäusen ausgelöst werden können. Diese Art der Behandlung führt in-vitro zur Proliferation und zur Zytokinproduktion bei einem Teil der T-Helfer (Th)-Effektor/Gedächtniszellen. Dabei ist zwar der physische Kontakt zwischen Th-Zellen und CD4--LPS-responsiven Zellen essentiell, jedoch geschieht die Aktivierung nicht über den T-Zellrezeptor. Als entscheidend hat sich die Bindung von kostimulatorischen Rezeptoren auf Th-Zellen durch kostimulatorische Moleküle auf CD4--Zellen erwiesen. Diese Form der Bystander-Aktivierung bietet eine Antigen-unabhängige Erklärung für die Zusammenhänge von Infektion und Autoimmunität, die mit den klinischen und epidemiologischen Daten besser vereinbar ist als die Antigen-spezifischen Modelle. / Infections sometimes associate with exacerbations of autoimmune diseases through pathways that are poorly understood. Antigen-specific mechanisms such as cross-reactivity between a microbial antigen and a self-antigen have received no direct support. Here it is shown that activation by lipopolysaccharide (LPS) induces relapses of experimental autoimmune encephalitis (EAE) in normal mice. This form of treatment induces proliferation and cytokine production in a fraction of effector/memory T helper (Th) lyphocytes in vitro via physical contact of Th cells with CD4--LPS-responsive cells. TCR mediated signals are not necessary; rather what is required is ligation of costimulatory receptors on Th cells by costimulatory molecules on the CD4- cells. This form of bystander activation provides an antigen-independent link between infection and autoimmunity that might fit the clinical and epidemiological data on the connection between infection and autoimmunity better than the antigen-specific models.
|
Page generated in 0.0416 seconds