Spelling suggestions: "subject:"kaliumnatriumniobat"" "subject:"kaliumlnatriumsout""
1 |
Ferroelectric Phase Transitions in Strained (K,Na)NbO3 Thin Films Investigated by Three-Dimensional in Situ X-Ray DiffractionBogula, Laura 20 January 2022 (has links)
In dieser Arbeit werden ferroelektrische Phasenübergänge in verspannten (K,Na)NbO3-Schichten erstmals mit Hilfe temperaturabhängiger dreidimensionaler Röntgenbeugung untersucht. Der Fokus liegt auf stark anisotrop verspannten Dünnschichten, die bei Raumtemperatur ein geordnetes Fischgräten-Domänenmuster mit einer periodischen Anordnung von monoklinen a1a2/MC-Phasen aufweisen. Bei Erhöhung der Temperatur durchlaufen die (K,Na)NbO3-Dünnschichten einen ferroelektrischen Phasenübergang in die orthorhombische Hochtemperaturphase, die sich durch regelmäßige, alternierenden a1/a2-Streifendomänen mit ausschließlich lateraler Polarisation auszeichnet. In-plane Röntgenmessungen zeigen, dass die Filmeinheitszellen eine kleine Verzerrung in der Ebene erfahren, was zur Bildung von vier verschiedenen Einheitszellvarianten und damit vier verschiedenen (Super-)Domänenvarianten führt. Durch den Vergleich von Röntgenbeugungsmessungen verschiedener Bragg-Reflexe an Filmen mit unterschiedlicher Schichtdicke ist es möglich, die spezifischen Beugungsmerkmale zu unterscheiden und sie den einzelnen Phasen zuzuordnen. Mit Hilfe von in situ temperaturabhängiger Röntgenbeugung ist es daher möglich, die Details des Phasenübergangs vom Fischgräten in das Streifen-Domänenmuster aufzudecken. Es zeigt sich, dass dieser sich über einen großen Temperaturbereich erstreckt und in mehreren Schritten vollzieht. Die Beobachtung von Phasenkoexistenz innerhalb des Übergangs und einer thermischen Hysterese in der Phasenübergangstemperatur lassen auf einen Phasenübergang erster Art schließen. Zudem hängt die Phasenübergangstemperatur stark von der Kaliumkonzentration x in der KxNa1-xNbO3-Dünnschicht ab und kann durch eine Änderung von x=0,95 (stärker kompressiv verspannt) auf x=0,8 (stärker tensil verspannt) um etwa 60 K erhöht werden. Darüber hinaus ist dies die erste Studie, die experimentell beobachtete dreidimensionale Domänenanordnungen direkt mit Berechnungen aus Phasenfeldsimulationen vergleicht. / In this work, ferroelectric phase transitions in strained (K,Na)NbO3 films are studied for the first time using in situ temperature-dependent three-dimensional X-ray diffraction. The focus lies on strongly anisotropically strained thin films, which exhibit a well-ordered herringbone domain pattern with a periodic arrangement of monoclinic a1a2/MC phases at room temperature. Upon increasing temperatures, the (K,Na)NbO3 thin films undergo a ferroelectric phase transition to the orthorhombic high-temperature phase, which is characterized by a regular pattern of alternating a1/a2 stripe domains with pure lateral polarization. In-plane X-ray measurements show that the film unit cells undergo a small in-plane distortion, leading to the formation of four different unit cell variants and thus four different (super)domain variants. By comparing X-ray diffraction measurements of different Bragg reflections of films with different film thicknesses, it is possible to distinguish the specific diffraction features and assign them to the individual phases observed at the different temperatures. Using in situ temperature-dependent X-ray diffraction, it is therefore possible to reveal the details of the phase transition from the a1a2/MC herringbone to the a1/a2 stripe domain pattern. It is shown to extend over a wide temperature range and to occur in several steps. The observation of phase coexistence within the transition and a thermal hysteresis in the phase transition temperature suggests a first-order type phase transition. Moreover, the phase transition temperature strongly depends on the molar concentration of potassium x in the KxNa1-xNbO3 thin film and can be increased by about 60 K by changing x=0.95 (more compressively strained) to x=0.8 (more tensile strained). Furthermore, this is the first study to directly compare experimentally observed three-dimensional domain arrangements with calculations from phase field simulations.
|
2 |
Reliability Assessment and Defect Characterization of Piezoelectric Thin FilmsHo, Kuan-Ting 19 October 2024 (has links)
The ensuring of reliability of piezoelectric thin films is crucial for a successful piezoelectric micro-electromechanical system (piezoMEMS) application. One of the most important limiting factors for reliability is resistance degradation, where the leakage current increases over time under electrical load. The understanding of resistance degradation in piezoelectric thin films requires knowledge about point defects inside the materials. In this dissertation, the resistance degradation mechanism in sputtered lead zirconate titanate (PZT) and lead-free alternative sodium potassium niobate (KNN) thin films is studied in both voltage polarities, and its relation to point defects is established. The conduction mechanism of both PZT and KNN thin films is found to be Schottky-limited. Furthermore, the resistance degradation is due to the reduction in Schottky barrier height, which results from the interfacial accumulation of additional charged defects. In order to study those defects, we use thermally stimulated depolarization current (TSDC) measurements and charge-based deep level transient spectroscopy (Q-DLTS) to characterize the defects in both PZT and KNN thin films. In PZT thin films, the resistance degradation take place in different waves of increasing leakage current. Both oxygen vacancies and lead vacancies contribute to the different waves of resistance degradation in both voltage polarities. A physical degradation model was developed based on hopping migration of oxygen vacancies at constant speed and exponent accumulation of lead vacancy trapping, where the natural logarithm of leakage current is proportional to the accumulated defect concentration to the power of 0.25. By using the oxygen vacancy concentration measured by TSDC and lead vacancy concentrations measured by Q-DLTS, the model successfully explained the resistance degradation behaviors of PZT films varying due to deposition non-uniformity and due to different process parameters. The accumulation of oxygen vacancies at cathode is supported by X-ray photoelectron spectroscopy (XPS), and the resistance degradation can be restored by proper heat and electrical treatment as predicted by the defect characterization results. In KNN thin films, oxygen vacancies contribute to the resistance degradation when a negative voltage is applied at the top electrode, whereas sodium and potassium vacancies contribute to the resistance degradation when a positive voltage is applied at the top electrode. The model developed for PZT can be applied also to KNN, where the model successfully explained the resistance degradation behaviors of KNN films varying due to the deposition non-uniformity by using the defect concentration measured by TSDC. The accumulation of oxygen vacancies at cathode and sodium plus potassium vacancies at anode are supported by transmission electron microscopy energy dispersive X-ray spectroscopy (TEM-EDX), and the resistance degradation can be restored also by proper heat and electrical treatment as predicted by the defect characterization results. This dissertation revealed the similarity of the resistance degradation between sputtered PZT and KNN thin films. The degradation is controlled by the crystallography point defects created during deposition process inside the material, indicating the significance of process control on material reliability. This dissertation also demonstrates the applicability of TSDC and Q-DLTS as alternative methods to assess the quality of the piezoelectric thin films. Both measurement techniques provide additional information regarding specific defects when comparing with conventional highly accelerated lifetime test (HALT) or other relevant tests. / Die Sicherstellung der Zuverlässigkeit piezoelektrischer Dünnschichten ist entscheidend für eine erfolgreiche Anwendung in piezoelektrischen mikro-elektromechanischen Systemen (piezoMEMS). Einer der wichtigsten limitierenden Faktoren für die Zuverlässigkeit ist die Widerstandsdegradation, bei der der Leckstrom mit der Zeit unter elektrischer Last zunimmt. Das Verständnis der Widerstandsdegradation in piezoelektrischen Dünnschichten erfordert laut Literatur Kenntnisse über Punkt-Defekte innerhalb der Materialien. In dieser Dissertation wird der Mechanismus der Widerstandsdegradation in gesputterten Blei-Zirkonat-Titanat (PZT) Dünnschichten und dessen bleifreier alternative Kalium-Natrium-Niobat (KNN) in beiden Spannungspolaritäten untersucht und deren Zusammenhang mit Punkt-Defekte hergestellt. Der Leitungsmechanismus von PZT- und KNN-Dünnschichten ist Schottky-begrenzt. Außerdem ist die Widerstandsdegradation auf die Reduzierung der Schottky-Barrierhöhe zurückzuführen, die von der Akkumulation zusätzlicher aufgeladener -Defekte an der Grenzfläche stammt. Um diese -Defekte zu untersuchen, verwenden wir thermisch stimulierte Depolarisationsstrommessungen (Thermally stimulated depolarization current, TSDC) und ladungsbasierte Deep-Level-Transientenspektroskopie (Charge-based deep level transient spectroscopy, Q-DLTS), um die Defekte sowohl in PZT- als auch in KNN-Dünnschichten zu charakterisieren.Die Wiederstandsdegradation in PZT-Dünnschichten findet in unterschiedlichen Wellen des erhöhenden Leckstroms statt. Sowohl Sauerstofffehlstellen als auch Bleifehlstellen tragen zu den unterschiedlichen Wellen der Widerstandsdegradation in beiden Spannungspolaritäten bei. Ein physikalisches Degradationsmodell wurde entwickelt, basierend auf der Hopping-Migration von Sauerstofffehlstellen bei konstanter Geschwindigkeit und exponentieller Akkumulation von Ladungseinfang durch Bleifehlstellen, wobei der natürliche Logarithmus des Leckstroms proportional zur akkumulierten Defektkonzentration hoch 0,25 ist. Durch die Verwendung der Sauerstofffehlstellen- und Bleifehlstellenkonzentrationen konnte das Modell das Widerstandsdegradationsverhalten von PZT-Dünnschichten erklären, das wegen der Ungleichmäßigkeit der Deposition und wegen der verschiedenen Prozessparameters variiert. Die Sauerstofffehlstellenkonzentration wird durch TSDC gemessen und die Bleifehlstellenkonzentrationen wird durch Q-DLTS gemessen. Die Akkumulation von Sauerstofffehlstellen an der Kathode wird durch die Röntgen-Photoelektronenspektroskopie (X-ray photoelectron spectroscopy, XPS) unterstützt und die Widerstandsdegradation kann durch eine ordnungsgemäße Wärme- und elektrische Behandlung wiederhergestellt werden, wie durch die Ergebnisse von Defektecharakterisierung vorhergesagt wurde. Bei KNN-Dünnschichten tragen Sauerstofffehlstellen zu der Widerstandsdegradation bei, wenn eine negative Spannung an der oberen Elektrode anliegt, und Natrium- und Kaliumfehlstellen tragen zu der Widerstandsdegradation bei, wenn eine positive Spannung an der oberen Elektrode anliegt. Das für PZT entwickelte Modell kann auch auf KNN angewendet werden. Das Modell erklärt erfolgreich das Widerstandsdegradationverhalten von KNN-Dünnschichten, das durch die Ungleichmäßigkeit der Deposition variiert werden, was mithilfe der mit TSDC gemessenen Defektkonzentrationen erklärt werden kann. Die Akkumulation von Sauerstofffehlstellen an Kathode und Natrium- und Kaliumfehlstellen an der Anode wird durch die transmissionselektronenmikroskopische energiedispersive Röntgenspektroskopie (transmission electron microscopy energy dispersive X-ray spectroscopy, TEM-EDX) unterstützt, und die Widerstandsdegradation kann auch durch eine ordnungsgemäße Wärme- und elektrische Behandlung wiederhergestellt werden, wie durch die Ergebnisse von Defektecharakterisierung vorhergesagt wurde. Diese Dissertation zeigt die Ähnlichkeit der Widerstandsdegradation zwischen gesputterten PZT- und KNN-Dünnschichten. Die Degradation wird durch die kristallographischen Punkt-Defekte gesteuert, die während des Abscheidungsprozesses im Material entstehen. Das weist auf die Bedeutung der Prozesskontrolle für die Zuverlässigkeit des Materials hin. Diese Dissertation zeigt auch die Anwendbarkeit von TSDC und Q-DLTS als alternative Methoden zur Beurteilung der Qualität der piezoelektrischen Dünnschichten. Beide Messtechniken liefern zusätzliche Informationen zu spezifischen Defekte im Vergleich zu traditionellen HALT-Prüfungen (highly accelerated lifetime test).
|
Page generated in 0.031 seconds