• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 20
  • 17
  • 10
  • 8
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 141
  • 141
  • 77
  • 38
  • 26
  • 25
  • 23
  • 22
  • 22
  • 22
  • 21
  • 18
  • 18
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Studies on the effect of ErbB tyrosine kinase inhibitors on malignant melanoma growth and survival in vitro /

Djerf, Emelie January 2009 (has links)
Licentiatavhandling (sammanfattning) Linköping : Linköpings universitet, 2009. / Härtill 2 uppsatser.
12

Targeting the MIF-CD74 axis to overcome resistance to tyrosine kinase inhibitors in lung cancer

Lee, Meghan 01 March 2024 (has links)
Development of tyrosine kinase inhibitors (TKIs) against oncogenic drivers has significantly improved survival of patients with oncogene-mutated non-small cell lung cancer (NSCLC). However, acquired resistance to TKIs emerges over time in essentially all patients who initially respond. Recent evidence suggests that drug-tolerant persister (DTP) cells, which survive and adapt to targeted therapies during an early phase of treatment, play an important role in the emergence of drug resistance. A previous study reported that cluster of differentiation 74 (CD74) expression is upregulated in epidermal growth factor receptor (EGFR)-mutated lung cancer after treatment with EGFR-TKIs and that CD74 can be one of the DTP cell markers. However, both the mechanism underlying CD74 expression and the role of CD74 in DTP cells remain unclear. In the current study, an attempt was made to identify the mechanism using cell culture systems and transgenic mouse models. The results confirmed CD74 upregulation at the messenger RNA (mRNA) level after treatments with TKIs in various oncogene-mutated cell lines, including those with EGFR mutations, ROS1 fusions, and ALK fusions. The class II transactivator (CIITA), upstream of CD74, and tumor necrosis factor (TNF)-α expression were induced by treatments with TKIs in tumor cells, leading to an increase in CD74 expression. In addition, the results showed that treatments with TKIs enhance the autocrine secretion of macrophage migration inhibitory factor (MIF), a ligand of CD74, from tumor cells. This implied that autocrine stimulation of CD74 signaling blocks apoptosis and causes emergence of DTP cells. To examine whether CD74 plays an important role in the emergence of resistance to TKIs in vivo, experiments were completed in which lung-specific EGFR-L858R-T790M transgenic mice were crossed with Cd74 knockout mice. The results showed that complete deletion of CD74 overcomes or delays resistance to TKIs. Taken together, the results of this study suggest that the MIF-CD74 axis can be a novel target to overcome resistance in driver-mutated NSCLC. / 2026-02-28T00:00:00Z
13

Exploring the PI3Kα and γ binding sites by homology modeling and inhibitors utilizing a 2,6-disubstituted isonicotinic scaffold

Cherian, Philip T. 21 July 2009 (has links)
No description available.
14

Hypoxia modulates the activity of a series of clinically approved tyrosine kinase inhibitors

Ahmadi, M., Ahmadihosseini, Z., Allison, Simon J., Begum, S., Rockley, K., Sadiq, Maria, Chintamaneni, S., Lokwani, R., Hughes, N., Phillips, Roger M. January 2014 (has links)
AND Hypoxia in tumours is known to cause resistance to conventional chemotherapeutic drugs. In contrast, little is known about the effects of hypoxia on targeted anti-cancer drugs. This study evaluated the effect of hypoxia on a series of clinically approved tyrosine kinase inhibitors (TKIs). EXPERIMENTAL APPROACH: The effect of hypoxia (0.1% oxygen) on the activity of conventional cytotoxic drugs (5-fluorouracil, doxorubicin and vinblastine), the hypoxia-activated prodrug tirapazamine and 9 TKIs was determined in a panel of cell lines. Where hypoxia had a marked effect on chemosensitivity, Western blot analysis was conducted to determine the effect of hypoxia on target expression and the effect of TKIs on cell signalling response under aerobic and hypoxic conditions. KEY RESULTS: Three patterns of chemosensitivity were observed: resistance under hypoxia, equitoxic activity against hypoxic and aerobic cells, and preferential cytotoxicity to hypoxic cells. Significant hypoxia selectivity (independent of HIF1) was observed in the case of dasatinib and this correlated with the ability of dasatinib to inhibit phosphorylation of Src at tyrosine 530. Sorafenib was significantly less effective under hypoxic conditions but resistance did not correlate with hypoxia-induced changes in Raf/MEK/ERK signalling. CONCLUSIONS AND IMPLICATIONS: Hypoxia influences the activity of TKIs but in contrast to conventional cytotoxic drugs, preferential activity against hypoxic cells can occur. The search for hypoxia-targeted therapies has been long and fruitless and this study suggests that some clinically approved TKIs could preferentially target the hypoxic fraction of some tumour types.
15

Pharmacological and analytical studies of the cyclin dependent kinase inhibitors

Sallam, Hatem, January 2009 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2009. / Härtill 5 uppsatser.
16

The synthesis of novel kinase inhibitors using click chemistry

Hodson, Luke 04 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Cancer is the leading cause of death on the planet, killing an estimated 8.2 million people in the year of 2012.The disease is associated with two families of genes, namely oncogenes and tumour suppressor genes. The hallmarks of cancer pathogenesis include gene amplification, point mutations or chromosomal rearrangements within these genes. Kinases are responsible for the reversible phosphorylation of proteins, which plays a significant and extensive role in cellular signal transduction. Aberrant kinase activity provokes overexpression, mutations and chromosomal translocation and results in the onset of onco- and tumorogenesis, ultimately leading to cancer. Inactivation of this class of enzyme is thus critical as it would result in the suppression of these unwanted activities. For this, researchers have developed kinase inhibitors, specifically targeting these proteins and thus inhibiting signal transduction pathways and tumour growth. This has resulted in great successes, particularly in the case of the commercial inhibitor, imatinib. However, resistance to approved therapeutic agents through mutations has resulted in the search for more potent and selective inhibitors to overcome these obstacles. This project involved the synthesis of bioactive heterocycles linked to 1,2,3-triazoles using either a C-C or C-N bond forming strategy. The synthetic methodology followed included the use of Sonogashira coupling reactions between3-bromoquinoline, 7-chloro-4-iodoquinoline, 4-bromoisoquinolineand5-bromoisoquinolineand trimethylsilylacetylene (TMSA), followed by deprotection of the TMS group to yield heterocycles bearing terminal alkynes. The synthesis of both benzyl azide and 2-(azidomethyl)pyridine as azide fragments, allowed for subsequent coupling of the synthesized azide and alkyne fragments through copper-mediated click chemistry, affording a library of 1,4-substituted 1,2,3-triazole based reversible kinase inhibitors. Synthesis of a second library of o-, m- and p-substituted nitro benzyl azides, allowed for both copper- and ruthenium-mediated click reactions, between the alkynes and nitro benzyl azides synthesized, to yield 1,4- and 1,5-substituted 1,2,3-triazoles, respectively. Finally, reduction of the incorporated o-, m- and p- substituted nitro group, and acylation of the resultant amine with acryloyl chloride, resulted in the incorporation of the important Michael acceptor moiety required for irreversible inhibition. This afforded a library of both reversible and potential irreversible triazole-based kinase inhibitors through efficient copper- and ruthenium-mediated click chemistry. Biological screening and activity assays against the wildtype, and two mutated forms of the EGFR kinase, were undertaken with these synthesized compounds.A number of synthesized inhibitors showed good selectivity for the mutated forms of the EGFR kinase only.The most potent inhibitor N-{2-{[4-(isoquinolin-4-yl)-1H-1,2,3-triazol-1-yl]methyl}phenyl}acrylamide,displayed efficacy in the low μM range - comparable to that of the FDA approved drug, gefitinib. The synthetic methodology derived in this project could be applied to the use of biological space probes with further investigatory research. Furthermore, from the biological screening results obtained, and the selectivity profile shown by these inhibitors, the synthesis of a second generation library of compounds is an additional research possibility. / AFRIKAANSE OPSOMMING: Kanker is die hoof oorsaak van sterftes ter wêreld, wat verantwoordelik is vir die dood van ongeveer 8.2 miljoen mense in die jaar 2012. Die siekte word geassosieer met twee geenfamilies, naamlik onkogene en gewasonderdrukkingsgene. Die kenmerke van kanker pathiogene behels geenversterking, puntmutasies of chromosomale herrangskikking binne in die gene. Kinase is verantwoordelik vir die omkeerbare fosforilering van proteine wat 'n uiters belangrike rol in sellulere sein transduksie speel. Abnormale kinase aktiwiteit lei tot ooruitdrukking, mutasies en chromosomale translokasie wat tot die ontwikkeling van onko- en gewasgroei en wat eindelik tot kanker lei. Deaktivering van die klas van ensieme is dus krities want dit sal die ongewenste abnormale aktiwiteite onderdruk. As gevolg van die bogenoemde, het navorsers kinase inhibeerders ontwikkel wat die spesifieke protein teiken en hiermee die sein transduksie roete asook gewas groei inhibeer. Hiermee het die sukses van inhibeerders veral die kommersiele inhibeerder, imatinib, grootliks toegeneem. Oor die afgelope jare het die belangstelling in die ontwikkeling van meer selektiewe en kragtige inhibeerders toegeneem as gevolg van die weerstand wat goedgekeurde terapeutiese middels opbou. In hierdie projek is daar gebruik gemaak van 'n C-C of C-N bindingsvorming strategie om bioaktiewe heterosikliese molekules te sintetiseer wat gekoppel is aan 1,2,3-triasool funksionele groepe. Die sintetiese metode maak gebruik van Sonogashira reaksies vir die 3-bromo-kwinolien, 7-chloro-4-iodokwinolien, 4-bromoisokwinolien en 5-bromoisokwinolien met trimetielsilielasetileen (TMSA), gevolg met die ontskerming van die TMS-groep om die terminale alkyn op die heterosiklusse te ontbloot. Die asied fragmente, bensiel asied en 2-(asidometiel)piridien, was toe gesintetiseer om met die gevormde heterosiklus alkyne 'n koper ondersteunende kliek chemie te ondergaan. 'n Reeks van 1,4-digesubstitueerde 1,2,3-triasool gebaseerde omkeerbare kinase inhibitore is toe gevorm. 'n Tweede reeks met o-, m-, en p- gesubtitueerde nitro bensiel asiede was gesintetiseer om 1,4- en 1,5- digesubtitueerde 1,2,3-triasole te sintetiseer met behulp van koper- en ruthenium ondersteunende kliek chemie. Laastens was die o-, m-, en p- nitro groepe gereduseer om 'n primêre amien te vorm. Die gevormende amien het 'n asileringsreaksie met akriloïel chloried ondergaan om die kern, die Michael akseptor, te inkorporeer. Die Michael akseptor word benodig om 'n onomkeerbare inhibitoriese aktiwiteit te kan uitvoer. Die projek het dus met behulp van kliek chemie, twee 1,2,3-triasool reekse gelewer wat omkeerbare en onomkeerbare inhibitoriese aktiwiteit kan uitvoer. Die verbindings gesintetiseerd in hierdie projek het keuringstoetse ondergaan teen die wilde tipe en teen twee gemuteerde forme van die EGFR kinase ensiem. Van hierdie verbindings het goeie selektiwiteit vertoon teenoor die gemuteerde EGFR kinase ensiem. Die mees aktiewe inhibeerder, N-{2-{[4-isokwinolin-4-iel)-1H-1,2,3-triasool-1-iel]feniel}akrielamied, het aktiwiteit in die lae μM reeks vertoon. Dié inhibisie waarde is vergelykbaar met die FDA goedgekeurde medikasie, gefitinib. In hierdie projek is sintetiese metodes ontwikkel wat toegepas kan word op meer intensiewe biologiese ondersoeke en asook meer navorsing. Die resultate vekry van die biologiese aktiwiteit, asook die verbindings se selektiwiteit, gee die moontlikheid vir die ontwikkeling en sintese van 'n tweede generasie verbindings.
17

Mutational analysis of isoform selectivity and conformational equilibria in protein kinase inhibition

Alexander, Leila Tamara January 2015 (has links)
Deregulation of protein kinases is associated with many diseases making them important targets for therapeutic intervention. Kinases can switch between active and inactive conformations that can be targeted by type 1 or type 2 inhibitors respectively. One of the most relevant conformational switches is the ‘in’ and ‘out’ movement of the ATP/Mg2+ binding motif DFG. Factors modulating the conformational equilibria such as the residue environment of regulatory motifs remain poorly understood despite their importance for drug discovery. In this thesis, the first model system tested the hypothesis that accessibility of the DFG-out conformation is restricted by the energetic cost of transition between the in and out states. CDK2 was chosen as a target that was thought to have an inaccessible DFG-out conformation, and several point mutations were introduced to promote this conformational transition. Detailed biochemical and biophysical characterisation illustrated that the mutants bound type 2 inhibitors more potently than the wild type. In addition, the wild-type CDK2 was shown to bind type 2 inhibitors in the absence, but not in the presence, of cyclin. The first known CDK2 co-crystal structure in the DFG-out conformation was solved, opening the door to a new class of CDK2 inhibitors. In the second project, site-directed mutagenesis was used to explore the residues determining inhibitor selectivity between PIM1 and PIM2. Evaluation of ligand binding to the variants and comparison of PIM1 and PIM2 crystal structures showed that flexibility of the phosphate-binding loop was the dominant factor determining the differences in their affinities for ATP and small molecule inhibitors. These studies illustrate that residues contributing to kinase conformational equilibria can be just as important for inhibitor binding as contact residues formed in the ligand complex.
18

Studium účinku protinádorových léčiv inhibitorů tyrosinkinas ve formě nanotransportérů / Study of action of anticancer drugs tyrosine kinase inhibitors in a form of nanotransporters

Takácsová, Paulína January 2019 (has links)
Tyrosine kinase inhibitors (TKI) are small organic molecules designed for the targeted cancer therapy. They perform the inhibition of activated receptor tyrosine kinases in tumor cells, that defeats tumor growth, proliferation, metastasis and angiogenesis in tumor tissue. Two TKI, lenvatinib and vandetanib, are used in thyroid cancer treatment. This thesis investigates the ways leading to enhancement of efficiency of these anticancer drugs for therapy. One of the studied anticancer drug - lenvatinib - was investigated to be prepared in a nanoform. Nanoparticles were based on protein apoferritin as well as on lipids. Theoretical model of lenvatinib interaction with an apoferritin cavity, as well as the model of its encapsulation obtained by computer modeling indicated that lenvatinib seems not to be suitable for preparation of apoferritin nanoparticles. Since lenvatinib occurs in its neutral form during preparation of nanoparticles, it does not interact with nanoparticle. The unsuccessful experimental preparation of lenvatinib-loaded apoferritin nanoparticles confirmed that lenvatinib is not suitable for its preparation. However, the theoretical model can serve for screening of other potentially suitable drugs before the experimental nanoparticle preparation. Since the experimental preparation of...
19

Vliv vandetanibu, lenvatinibu a ellipticinu na expresi potkaních cytochromů P450 1A a 3A / The effect of vandetanib, lenvatinib and ellipticine on the expression of rat cytochromes P450 1A and 3A

Jelínková, Sandra January 2018 (has links)
In recent years, the inhibiition of tyrosine kinases,which may incorrectly regulate some singaling pathway has been used to treat cancer as so-called biological therapy. An example of such inhibitors are vandetanib and lenvatinib. These two substances are used to treat thyroid gland tumors because they affect vascular growth factor receptor or endothelial growth factor receptor that can regulate tumor growth and metastasis. Ellipticine, which has anti-tumor effects on lots of tumor disease, has been investigated in this study together with vandetanib and lenvatinib. In this diploma thesis, the effect of mentioned tyrosine kinase inhibitors, ellipticine and their combinations on gene and protein expression of CYP1A1, 1A2, 3A1 and 3A2 in rat liver in vivo was determined. Protein expression was studied using Western blot method with imunodetection. Gene expression was assessed by quantitative PCR. Moreover, the effect of tested substances and their combinations on CYP1A activity (measured as 7-ethoxyresorufin O-deethylation), CYP1A2 activity (measured as 7-methoxyresorufin O-demethylation), CYP1A1 activity (measured as Sudan I oxidation), CYP3A specific activity (measured as testosteron 6β-hydroxylation) and ellipticine, vandetanib, lenvatinib metabolism was determined. It has been confirmed that...
20

O papel dos marcadores de angiogênese no feocromocitoma

Vargas, Carla Vaz Ferreira January 2013 (has links)
Medullary thyroid carcinoma (MTC) is a rare malignant tumor originating from thyroid parafollicular C cells. This tumor accounts for 3-4% of thyroid gland neoplasias. MTC may occur sporadically or inherited. The hereditary MTC is part of syndromes of multiple endocrine neoplasia (MEN) 2A and 2B, familial medullary thyroid carcinoma (FMTC). Germline mutations of the RET (REarranged during Transfection) protooncogene cause hereditary form of cancer, whereas somatic mutations can be present in sporadic form of the disease. The RET gene encodes a receptor tyrosine kinase involved in the activation of intracellular signaling pathways leading to proliferation, growth, differentiation, migration and survival. Nowadays, the only possibility of cure for MTC patients consists of total thyroidectomy associated with lymph node dissection. Based on the knowledge of the pathogenic mechanisms of MTC, new drugs have been developed in attempt to control metastatic disease. Of these, the small-molecule tyrosine kinase inhibitors (TKIs) represent one of the most promising agents for MTC treatment and clinical trials have shown encouraging results. Hopefully, the cumulative knowledge about the targets of action of these drugs as well as TKI-associated side effects will help on choosing the best therapeutic approach in order to enhance its benefits.

Page generated in 0.2235 seconds