Spelling suggestions: "subject:"cinetic reactions"" "subject:"akinetic reactions""
1 |
Enhancing the Nitrite Reductase Activity of Modified Hemoglobin: Bis-tetramers and their PEGylated DerivativesLui, Francine Evelyn 10 January 2012 (has links)
The need for an alternative to red cells in transfusions has led to the creation of hemoglobin-based oxygen carriers (HBOCs). However, evaluations of all products tested in clinical trials have noted cardiovascular complications, raising questions about their safety that led to the abandonment of all those products. It has been considered that the adverse side effects come from the scavenging of the vasodilator – nitric oxide (NO) by the deoxyheme sites of the hemoglobin derivatives. Another observation is that HBOCs with lower oxygen affinity than red cells release oxygen prematurely in arterioles, triggering an unwanted homeostatic response. Since the need for such a product remains critical, it is important to understand the reactivity patterns that contribute to the observed complications.
Various alterations of the protein have been attempted in order to reduce HBOC-induced vasoconstriction. Recent reports suggest that a safe and effective product should be pure, homogenous and have a high molecular weight along with appropriate oxygenation properties. While these properties are clearly important, vasodilatory features of hemoglobin through its nitrite reductase activity may also act as an in situ source of NO. It follows that HBOCs with an enhanced ability to produce NO from endogenous nitrite may serve to counteract vasoactivity associated with NO-scavenging by hemoglobin.
Here we characterize the effects of different protein modifications on the nitrite reductase activity of hemoglobin. We produced a variety of HBOCs that include cross-linked tetramers, polyethylene glycol (PEG) conjugates and bis-tetramers of hemoglobin. We report that the rate of NO production strongly depends on the conformational state of the protein, with R-state stabilized proteins (PEG-Hbs), exhibiting the fastest rates. In particular, we found that PEGylated bis-tetramers of hemoglobin (BT-PEG) exhibit increased nitrite reductase activity while retaining cooperativity and stability. Animal studies of BT-PEG demonstrated that this material is benign: it did not cause significant increases in systemic blood pressure in mice, the major side effect associated with existing HBOCs. BT-PEG exhibits an enhanced nitrite reductase activity together with sample purity and homogeneity, molecular size and shape, and appropriate oxygenation properties, characteristics of a clinically useful HBOC.
|
2 |
Enhancing the Nitrite Reductase Activity of Modified Hemoglobin: Bis-tetramers and their PEGylated DerivativesLui, Francine Evelyn 10 January 2012 (has links)
The need for an alternative to red cells in transfusions has led to the creation of hemoglobin-based oxygen carriers (HBOCs). However, evaluations of all products tested in clinical trials have noted cardiovascular complications, raising questions about their safety that led to the abandonment of all those products. It has been considered that the adverse side effects come from the scavenging of the vasodilator – nitric oxide (NO) by the deoxyheme sites of the hemoglobin derivatives. Another observation is that HBOCs with lower oxygen affinity than red cells release oxygen prematurely in arterioles, triggering an unwanted homeostatic response. Since the need for such a product remains critical, it is important to understand the reactivity patterns that contribute to the observed complications.
Various alterations of the protein have been attempted in order to reduce HBOC-induced vasoconstriction. Recent reports suggest that a safe and effective product should be pure, homogenous and have a high molecular weight along with appropriate oxygenation properties. While these properties are clearly important, vasodilatory features of hemoglobin through its nitrite reductase activity may also act as an in situ source of NO. It follows that HBOCs with an enhanced ability to produce NO from endogenous nitrite may serve to counteract vasoactivity associated with NO-scavenging by hemoglobin.
Here we characterize the effects of different protein modifications on the nitrite reductase activity of hemoglobin. We produced a variety of HBOCs that include cross-linked tetramers, polyethylene glycol (PEG) conjugates and bis-tetramers of hemoglobin. We report that the rate of NO production strongly depends on the conformational state of the protein, with R-state stabilized proteins (PEG-Hbs), exhibiting the fastest rates. In particular, we found that PEGylated bis-tetramers of hemoglobin (BT-PEG) exhibit increased nitrite reductase activity while retaining cooperativity and stability. Animal studies of BT-PEG demonstrated that this material is benign: it did not cause significant increases in systemic blood pressure in mice, the major side effect associated with existing HBOCs. BT-PEG exhibits an enhanced nitrite reductase activity together with sample purity and homogeneity, molecular size and shape, and appropriate oxygenation properties, characteristics of a clinically useful HBOC.
|
3 |
REACTIVE TRANSPORT MODELLING OF DISSOLVED CO2 IN POROUS MEDIA : Injection into and leakage from geological reservoirsAhmad, Nawaz January 2016 (has links)
The geological sequestration of carbon dioxide (CO2) is one of the options of controlling the greenhouse gas emissions. However, leakage of CO2 from the storage reservoir is a risk associated with geological sequestration. Over longer times, large-scale groundwater motion may cause leakage of dissolved CO2 (CO2aq). The objectives of this thesis are twofold. First, the modelling study analyzes the leakage of CO2aq along the conducting pathways. Second, a relatively safer mode of geological storage is investigated wherein CO2aq is injected in a carbonate reservoir. A reactive transport model is developed that accounts for the coupled hydrological transport and the geochemical reactions of CO2aq in the porous media. The study provides a quantitative assessment of the impact of advection, dispersion, diffusion, sorption, geochemical reactions, temperature, and heat transport on the fate of leaking CO2aq. The mass exchange between the conducting pathway and the rock matrix plays an important role in retention and reactions of leaking CO2aq. A significant retention of leaking CO2aq is caused by its mass stored in aqueous and adsorbed states and its consumption in reactions in the rock matrix along the leakage pathway. Advection causes a significant leakage of CO2aq directly from the reservoir through the matrix in comparison to the diffusion alone in the rock matrix and advection in a highly conducting, but thin fracture. Heat transport by leaking brine also plays an important role in geochemical interactions of leaking CO2aq. Injection of CO2aq is simulated for a carbonate reservoir. Injected CO2-saturated brine being reactive causes fast dissolution of carbonate minerals in the reservoir and fast conversion of CO2aq through considered geochemical reactions. Various parameters like dispersion, sorption, temperature, and minerals reaction kinetics are found to play important role in the consumption of CO2aq in reactions. / <p>Research Funders:</p><p>(i) Higher Education Commission (HEC) of Pakistan</p><p>(ii) Lars Erik Lundberg Scholarship Foundation, Sweden</p>
|
4 |
Sistema fluxo-batelada monossegmentado: determinação espectrofotométrica de boro em plantas. / Monosegmented flow-batch system: Spectrophotometric determination of boron in plants.Barreto, Inakã Silva 30 August 2012 (has links)
Made available in DSpace on 2015-05-14T13:21:18Z (GMT). No. of bitstreams: 1
Arquivototal.pdf: 5236156 bytes, checksum: bb419d4ddca1889deb0fe27fbd777c26 (MD5)
Previous issue date: 2012-08-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work introduces the monosegmented flow-batch (MSFB) analysis concept. This system combines favourable characteristics of both flowbatch and the monosegmented analysers, allowing use of the flow-batch system for slow reaction kinetics without impairing sensitivity or sampling
throughput. The MSFB was evaluated during spectrophotometric determination of boron in plant extracts, which is a method that involves a slow reaction between boron and azomethine-H. All standard solutions were prepared in-line, and all analytical processes completed by simply changing the operational parameters in the MSFB control software. The limit of detection was estimated at 0.008 mg L−1. The measurements could be performed at a rate of 120 samples per hour with satisfactory precision. The proposed MSFB was successfully applied to analyse 10 plant samples and the results are in agreement with the reference method at a 95% level of confidence. / Esse trabalho introduz o conceito fluxo-batelada monossegmentado (monosegmented flow-batch - MSFB). Esse sistema combina as características favoráveis do sistema fluxo-batelada (flow-batch analysis FBA) e do fluxo monossegmentado (monosegmented flow analysis
MSFA), permitindo o uso do FBA em reações de cinética lenta sem prejuízo na sensibilidade ou na frequência de amostragem. O MSFB foi avaliado durante a determinação espectrofotométrica de boro em extrato de plantas, baseado no método que envolve a reação lenta entre o boro e
a azometina-H. Todas as soluções padrão foram preparadas in-line e todos os processos analíticos foram realizados por simples mudanças nos parâmetros operacionais do software de controle do MSFB. O limite de detecção foi estimado em 0,008 mg L-1. As medidas foram executadas com frequência analítica de 120 amostras por hora, com precisão satisfatória. O MSFB foi aplicado com sucesso na análise de 10 amostras
de extratos plantas e os resultados foram equivalentes aos obtidos pelo método de referência, ao nível de 95% de confiança estatística.
|
5 |
Um estudo teórico da reação do radical hidroxila com metanolFerreira, Daniela Lúcia 19 September 2016 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-04-26T13:52:48Z
No. of bitstreams: 1
danielaluciaferreira.pdf: 2001864 bytes, checksum: baa9c94a0457494a3f6bf721819ac7fe (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-04-26T13:53:59Z (GMT) No. of bitstreams: 1
danielaluciaferreira.pdf: 2001864 bytes, checksum: baa9c94a0457494a3f6bf721819ac7fe (MD5) / Made available in DSpace on 2017-04-26T13:53:59Z (GMT). No. of bitstreams: 1
danielaluciaferreira.pdf: 2001864 bytes, checksum: baa9c94a0457494a3f6bf721819ac7fe (MD5)
Previous issue date: 2016-09-19 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O uso de álcoois como combustíveis tem sido considerado uma promissora fonte de energia renovável. Considerável atenção tem sido dada às reações de metanol, uma vez que é um combustível alternativo importante. Nessa dissertação foi feito primeiramente um estudo dos sistemas moleculares que envolvem a reação entre o metanol e o radical hidroxila, otimizando-se as geometrias envolvidas em diferentes níveis teóricos como o Density Functional Theory (DFT), Hartree Fock (HF) e Coupled Cluster (CCSD(T)) calculados pelo MOLPRO [1]. A partir destes resultados foram construídos gráficos energéticos, que caracterizam a superfície de energia potencial de forma não-analítica. Utilizou-se métodos clássicos no estudo da dinâmica de reações químicas, gerando condições iniciais pelo método Quasiclassical Trajetory (QCT), em seguida, passamos ao estudo de trajetórias on-the-fly, que possui um custo computacional muito elevado inviabilizando um estudo estatístico das velocidades de reação. A partir daí, os procedimentos para calcular as constantes de velocidade em função das propriedades moleculares teóricas passou a ser investigado usando o pressuposto fundamental de que o perfil da reação pode ser descrito a um nível teórico pela Teoria do Estado de Transição (TST) usando-se para isto o programa kcvt [28]. Obtivemos as geometrias otimizadas, os gráficos energéticos de todos os pontos das reações OH+CH3OH→H2O+CH2OH e OH+CH3OH→H2O+CH3O nos níveis DFT - funcional BHLYP, HF e CCSD(T), assim como as constantes de velocidade canônica para uma faixa de temperatura de 120K a 3000k. / The use of alcohol as fuel has been considered a promising source of renewable energy. Considerable attention has been given to the reactions of methanol, since it is an important alternative fuel. In this dissertation, firstly it was studied molecular systems involving the reaction between methanol and the hydroxyl radical, optimizing the geometries involved in different theoretical levels like Density Functional Theory (DFT), Hartree Fock (HF) end Coupled Cluster (CCSD(T)) calculated by MOLPRO [1] . From these results it were built energy graphics that characterize the potential energy surface which is not analytical. We used standard methods to study the dynamics of chemical reactions, generating initial conditions by Quasiclassical Trajetory (QCT) method, passing to the study of trajectories on-the-fly, which has a very high computational cost invalidating a statistical study of reaction rates . Thereafter, the procedures to calculate the rate constants on the basis of theoretical molecular properties has been investigated using the fundamental assumption that the profile of the reaction can be described in a theoretical level by The Theory of State Transition (TST) using- to this the kcvt program [28]. We obtained the optimized geometries, the energy graphs of all the points of the reactions OH+CH3OH→H2O+CH2OH and OH+CH3OH→+H2OCH3O in the DFT-BHLYP, HFandCCSD(T)levels, as well as the canonical rates constants for a temperature range from 120K to 3000K.
|
6 |
Biocoque de eucalipto como fonte de energia renovável para uso siderúrgico /Barros, João Lúcio de January 2019 (has links)
Orientador: Leandro Cardoso de Morais / Resumo: O Brasil se destaca na produção do ferro e aço, e principalmente na utilização de fontes renováveis como insumos energéticos para sua produção. O biocoque possui potencial para utilização de biomassas como insumos energéticos em alto fornos, em substituição aos tradicionais combustíveis fósseis, carvão e coque, porém, ainda é um material pouco conhecido cientificamente. O objetivo foi encontrar os parâmetros adequados para a produção, em escala laboratorial, do biocoque de casca e serragem da madeira de eucalipto. Também verificar suas principais características térmicas e físico-químicas, antes e após a produção do biocoque. Foi usado a casca e serragem de eucalipto para a produção do biocoque. Os materiais passaram por analises de umidade, analise imediata, analise elementar, poder calorífico, densidades, resistência mecânica, estabilidade dimensional, termogravimetria, microscopia MEV, espectroscopia FTIR e EDS, difratometria de raio-x e análises cinética. O biocoque para ambos os materiais foram prensados com força de 10 toneladas sob 180 °C de temperatura por 10 minutos, apresentando características físico-químicas adequadas para o uso. Os biocoques tiveram caracteristicas físicas adequadas a necessidade de uso com alta resistência mecânica, com aproximadamente 10 MPa para ambos os materiais e durabilidade acima de 99 %. A densidade aparente (1.350 kg.m-3) foi aumentada aproximadamente cinco vezes comparado ao valor inicial para o material particulado. Os materiais apres... (Resumo completo, clicar acesso eletrônico abaixo) / Doutor
|
7 |
A New Paradigm Of Modeling Watershed Water QualityZhang, Fan 01 January 2005 (has links)
Accurate models to reliably predict sediment and chemical transport in watershed water systems enhance the ability of environmental scientists, engineers and decision makers to analyze the impact of contamination problems and to evaluate the efficacy of alternative remediation techniques and management strategies prior to incurring expense in the field. This dissertation presents the conceptual and mathematical development of a general numerical model simulating (1) sediment and reactive chemical transport in river/stream networks of watershed systems; (2) sediment and reactive chemical transport in overland shallow water of watershed systems; and (3) reactive chemical transport in three-dimensional subsurface systems. Through the decomposition of the system of species transport equations via Gauss-Jordan column reduction of the reaction network, fast reactions and slow reactions are decoupled, which enables robust numerical integrations. Species reactive transport equations are transformed into two sets: nonlinear algebraic equations representing equilibrium reactions and transport equations of kinetic-variables in terms of kinetically controlled reaction rates. As a result, the model uses kinetic-variables instead of biogeochemical species as primary dependent variables, which reduces the number of transport equations and simplifies reaction terms in these equations. For each time step, we first solve the advective-dispersive transport of kinetic-variables. We then solve the reactive chemical system node by node to yield concentrations of all species. In order to obtain accurate, efficient and robust computations, five numerical options are provided to solve the advective-dispersive transport equations; and three coupling strategies are given to deal with the reactive chemistry. Verification examples are compared with analytical solutions to demonstrate the numerical accuracy of the code and to emphasize the need of implementing various numerical options and coupling strategies to deal with different types of problems for different application circumstances. Validation examples are presented to evaluate the ability of the model to replicate behavior observed in real systems. Hypothetical examples with complex reaction networks are employed to demonstrate the design capability of the model to handle field-scale problems involving both kinetic and equilibrium reactions. The deficiency of current practices in the water quality modeling is discussed and potential improvements over current practices using this model are addressed.
|
8 |
A Three-dimensional Bay/estuary Model To Simulate Water Quality TransportYu, Jing 01 January 2006 (has links)
This thesis presents the development of a numerical water quality model using a general paradigm of reaction-based approaches. In a reaction-based approach, all conceptualized biogeochemical processes are transformed into a reaction network. Through the decomposition of species governing equations via Gauss-Jordan column reduction of the reaction network, (1) redundant fast reactions and irrelevant kinetic reactions are removed from the system, which alleviates the problem of unnecessary and erroneous formulation and parameterization of these reactions, and (2) fast reactions and slow reactions are decoupled, which enables robust numerical integrations. The system of species transport equations is transformed to reaction-extent transport equations, which is then approximated with two subsets: algebraic equations and kinetic-variables transport equations. As a result, the model alleviates the needs of using simple partitions for fast reactions. With the diagonalization strategy, it makes the inclusion of arbitrary number of fast and kinetic reactions relatively easy, and, more importantly, it enables the formulation and parameterization of kinetic reactions one by one. To demonstrate the general paradigm, QAUL2E was recasted in the mode of a reaction network. The model then was applied to the Loxahatchee estuary to study its response to a hypothetical biogeochemical loading from its surrounding drainage. Preliminary results indicated that the model can simulate four interacting biogeochemical processes: algae kinetics, nitrogen cycle, phosphorus cycle, and dissolved oxygen balance.
|
Page generated in 0.3719 seconds