• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New Paradigms for Automated Classification of Pottery

Hörr, Christian, Lindinger, Elisabeth, Brunnett, Guido 14 September 2009 (has links) (PDF)
This paper describes how feature extraction on ancient pottery can be combined with recent developments in artificial intelligence to draw up an automated, but still flexible classification system. These features include for instance several dimensions of the vessel's body, ratios thereof, an abstract representation of the overall shape, the shape of vessel segments and the number and type of attachments such as handles, lugs and feet. While most traditional approaches to classification are based on statistical analysis or the search for fuzzy clusters in high-dimensional spaces, we apply machine learning techniques, such as decision tree algorithms and neural networks. These methods allow for an objective and reproducible classification process. Conclusions about the "typability" of data, the evolution of types and the diagnostic attributes of the types themselves can be drawn as well.
2

New Paradigms for Automated Classification of Pottery

Hörr, Christian, Lindinger, Elisabeth, Brunnett, Guido 14 September 2009 (has links)
This paper describes how feature extraction on ancient pottery can be combined with recent developments in artificial intelligence to draw up an automated, but still flexible classification system. These features include for instance several dimensions of the vessel's body, ratios thereof, an abstract representation of the overall shape, the shape of vessel segments and the number and type of attachments such as handles, lugs and feet. While most traditional approaches to classification are based on statistical analysis or the search for fuzzy clusters in high-dimensional spaces, we apply machine learning techniques, such as decision tree algorithms and neural networks. These methods allow for an objective and reproducible classification process. Conclusions about the "typability" of data, the evolution of types and the diagnostic attributes of the types themselves can be drawn as well.

Page generated in 0.097 seconds