• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the role of dopamine in motivated behavior

Vitay, Julien 11 January 2017 (has links) (PDF)
Neuro-computational models allow to study the brain mechanisms involved in intelligent behavior and extract essential computational principles which can be implemented in cognitive systems. They are a promising solution to achieve a brain-like artificial intelligence that can compete with natural intelligence on realistic behaviors. A crucial property of intelligent behavior is motivation, defined as the incentive to interact with the world in order to achieve specific goals, either extrinsic (obtaining rewards such as food or money, or avoiding pain) or intrinsic (satisfying one’s curiosity, fun). In the human brain, motivated or goal-directed behavior depends on a network of different structures, including the prefrontal cortex, the basal ganglia and the limbic system. Dopamine, a neurotransmitter associated with reward processing, plays a central role in coordinating the activity of this network. It structures processing in high-level cognitive areas along a limbic-associative-motor gradient and impacts the learning capabilities of the whole system. In this habilitation thesis, I present biologically-constrained neuro-computational models which investigate the role of dopamine in visual object categorization and memory retrieval (Vitay and Hamker, 2008), reinforcement learning and action selection (Vitay and Hamker, 2010), the updating, learning and maintenance of working memory (Schroll et al., 2012) and timing processes (Vitay and Hamker, 2014). These models outline the many mechanisms by which the dopaminergic system regulates cognitive and emotional behavior: bistable processing modes in the cerebral cortex, modulation of synaptic transmission and plasticity, allocation of cognitive resources and signaling of relevant events. Finally, I present a neural simulator able to simulate a variety of neuro-computational models efficiently on parallel architectures (Vitay et al., 2015). / Neuronale Modelle nach dem Vorbild des Gehirns bieten die Möglichkeit intelligente, kognitive Prozesse nicht nur besser zu verstehen, sondern sie stellen auch eine vielversprechende Lösung dar, um eine Gehirn-ähnliche künstliche Intelligenz für Wahrnehmung und Verhaltensweisen zu erreichen, die mit natürlicher Intelligenz konkurrieren kann. Eine entscheidende Eigenschaft von intelligentem Verhalten ist Motivation, definiert als der Anreiz mit der Welt zu interagieren, um bestimmte Ziele zu erreichen, sei es extrinsisch (Belohnungen wie Nahrung oder Geld zu erhalten oder die Vermeidung von Schmerzen) oder intrinsisch (die Neugier zu befriedigen, Spaß zu haben). Im menschlichen Gehirn basiert motiviertes oder zielgerichtetes Verhalten auf einem Netzwerk von verschiedenen Strukturen, einschließlich des präfrontalen Cortex, der Basalganglien und des limbischen Systems. Dopamin, ein Neurotransmitter, welcher der Belohnungsverarbeitung zugeordnet wird, spielt eine zentrale Rolle bei der Koordination der Aktivität in diesem Netzwerk. Es strukturiert die Verarbeitung in High-Level-kognitiven Bereichen entlang eines limbischen-assoziativ-motor Gradienten und beinflusst die Lernfähigkeit des gesamten Systems. In dieser Habilitation, präsentiere ich biologisch motivierte neuronale Modelle, die die Rolle von Dopamin in der visuellen Objektkategorisierung und Gedächtnisabruf (Vitay and Hamker, 2008), Reinforcement Lernen und Aktionsauswahl (Vitay and Hamker, 2010), Aktualisierung, Lernen und Aufrechterhaltung von Arbeitsgedächtnis (Schroll et al., 2012) und Timing Prozessen (Vitay and Hamker, 2014) untersuchen. Diese Modelle beschreiben Mechanismen, durch die das dopaminerge System kognitives und emotionales Verhalten reguliert: bistabile Verarbeitungsmodi in der Hirnrinde, Plastizität und Modulation der synaptischen Übertragung, Zuweisung von kognitiven Ressourcen und Signalisierung von relevanten Ereignissen. Schließlich beschreibe ich einen neuronalen Simulator, der in in der Lage ist, eine Vielzahl von neuronalen Modellen effizient auf parallelen Architekturen zu simulieren (Vitay et al., 2015).
2

On the role of dopamine in motivated behavior: a neuro-computational approach

Vitay, Julien 11 November 2016 (has links)
Neuro-computational models allow to study the brain mechanisms involved in intelligent behavior and extract essential computational principles which can be implemented in cognitive systems. They are a promising solution to achieve a brain-like artificial intelligence that can compete with natural intelligence on realistic behaviors. A crucial property of intelligent behavior is motivation, defined as the incentive to interact with the world in order to achieve specific goals, either extrinsic (obtaining rewards such as food or money, or avoiding pain) or intrinsic (satisfying one’s curiosity, fun). In the human brain, motivated or goal-directed behavior depends on a network of different structures, including the prefrontal cortex, the basal ganglia and the limbic system. Dopamine, a neurotransmitter associated with reward processing, plays a central role in coordinating the activity of this network. It structures processing in high-level cognitive areas along a limbic-associative-motor gradient and impacts the learning capabilities of the whole system. In this habilitation thesis, I present biologically-constrained neuro-computational models which investigate the role of dopamine in visual object categorization and memory retrieval (Vitay and Hamker, 2008), reinforcement learning and action selection (Vitay and Hamker, 2010), the updating, learning and maintenance of working memory (Schroll et al., 2012) and timing processes (Vitay and Hamker, 2014). These models outline the many mechanisms by which the dopaminergic system regulates cognitive and emotional behavior: bistable processing modes in the cerebral cortex, modulation of synaptic transmission and plasticity, allocation of cognitive resources and signaling of relevant events. Finally, I present a neural simulator able to simulate a variety of neuro-computational models efficiently on parallel architectures (Vitay et al., 2015). / Neuronale Modelle nach dem Vorbild des Gehirns bieten die Möglichkeit intelligente, kognitive Prozesse nicht nur besser zu verstehen, sondern sie stellen auch eine vielversprechende Lösung dar, um eine Gehirn-ähnliche künstliche Intelligenz für Wahrnehmung und Verhaltensweisen zu erreichen, die mit natürlicher Intelligenz konkurrieren kann. Eine entscheidende Eigenschaft von intelligentem Verhalten ist Motivation, definiert als der Anreiz mit der Welt zu interagieren, um bestimmte Ziele zu erreichen, sei es extrinsisch (Belohnungen wie Nahrung oder Geld zu erhalten oder die Vermeidung von Schmerzen) oder intrinsisch (die Neugier zu befriedigen, Spaß zu haben). Im menschlichen Gehirn basiert motiviertes oder zielgerichtetes Verhalten auf einem Netzwerk von verschiedenen Strukturen, einschließlich des präfrontalen Cortex, der Basalganglien und des limbischen Systems. Dopamin, ein Neurotransmitter, welcher der Belohnungsverarbeitung zugeordnet wird, spielt eine zentrale Rolle bei der Koordination der Aktivität in diesem Netzwerk. Es strukturiert die Verarbeitung in High-Level-kognitiven Bereichen entlang eines limbischen-assoziativ-motor Gradienten und beinflusst die Lernfähigkeit des gesamten Systems. In dieser Habilitation, präsentiere ich biologisch motivierte neuronale Modelle, die die Rolle von Dopamin in der visuellen Objektkategorisierung und Gedächtnisabruf (Vitay and Hamker, 2008), Reinforcement Lernen und Aktionsauswahl (Vitay and Hamker, 2010), Aktualisierung, Lernen und Aufrechterhaltung von Arbeitsgedächtnis (Schroll et al., 2012) und Timing Prozessen (Vitay and Hamker, 2014) untersuchen. Diese Modelle beschreiben Mechanismen, durch die das dopaminerge System kognitives und emotionales Verhalten reguliert: bistabile Verarbeitungsmodi in der Hirnrinde, Plastizität und Modulation der synaptischen Übertragung, Zuweisung von kognitiven Ressourcen und Signalisierung von relevanten Ereignissen. Schließlich beschreibe ich einen neuronalen Simulator, der in in der Lage ist, eine Vielzahl von neuronalen Modellen effizient auf parallelen Architekturen zu simulieren (Vitay et al., 2015).
3

On Cognitive Aspects of Human-Level Artificial Intelligence

Besold, Tarek R. 26 January 2015 (has links)
Following an introduction to the context of Human-Level Artificial Intelligence (HLAI) and (computational) analogy research, a formal analysis assessing and qualifying the suitability of the Heuristic-Driven Theory Projection (HDTP) analogy-making framework for HLAI purposes is presented. An account of the application of HDTP (and analogy-based approaches in general) to the study and computational modeling of conceptual blending is outlined, before a proposal and initial proofs of concept for the application of computational analogy engines to modeling and analysis questions in education studies, teaching research, and the learning sciences are described. Subsequently, the focus is changed from analogy-related aspects in learning and concept generation to rationality as another HLAI-relevant cognitive capacity. After outlining the relation between AI and rationality research, a new conceptual proposal for understanding and modeling rationality in a more human-adequate way is presented, together with a more specific analogy-centered account and an architectural sketch for the (re)implementation of certain aspects of rationality using HDTP. The methods and formal framework used for the initial analysis of HDTP are then applied for proposing general guiding principles for models and approaches in HLAI, together with a proposal for a formal characterization grounding the notion of heuristics as used in cognitive and HLAI systems as additional application example. Finally, work is reported trying to clarify the scientific status of HLAI and participating in the debate about (in)adequate means for assessing the progress of a computational system towards reaching (human-level) intelligence. Two main objectives are achieved: Using analogy as starting point, examples are given as inductive evidence for how a cognitively-inspired approach to questions in HLAI can be fruitful by and within itself. Secondly, several advantages of this approach also with respect to overcoming certain intrinsic problems currently characterizing HLAI research in its entirety are exposed. Concerning individual outcomes, an analogy-based proposal for theory blending as special form of conceptual blending is exemplified; the usefulness of computational analogy frameworks for understanding learning and education is shown and a corresponding research program is suggested; a subject-centered notion of rationality and a sketch for how the resulting theory could computationally be modeled using an analogy framework is discussed; computational complexity and approximability considerations are introduced as guiding principles for work in HLAI; and the scientific status of HLAI, as well as two possible tests for assessing progress in HLAI, are addressed.

Page generated in 0.0647 seconds