Spelling suggestions: "subject:"komponentenanalyse"" "subject:"komponentanalyser""
1 |
Independent component analysis and slow feature analysis relations and combination /Blaschke, Tobias. January 2005 (has links) (PDF)
Berlin, Humboldt-University, Diss., 2005.
|
2 |
Independent component analysis and beyondHarmeling, Stefan. January 2004 (has links) (PDF)
Potsdam, University, Diss., 2004.
|
3 |
Composite-based Methods in Structural Equation Modeling / Kompositenbasierte Methoden in der StrukturgleichungsmodellierungSchuberth, Florian January 2019 (has links) (PDF)
This dissertation deals with composite-based methods for structural equation models with latent variables and their enhancement. It comprises five chapters. Besides a brief introduction in the first chapter, the remaining chapters consisting of four essays cover the results of my PhD studies.Two of the essays have already been published in an international journal.
The first essay considers an alternative way of construct modeling in structural equation modeling.While in social and behavioral sciences theoretical constructs are typically modeled as common factors, in other sciences the common factor model is an inadequate way construct modeling due to its assumptions. This essay introduces the confirmatory composite analysis (CCA) analogous to confirmatory factor analysis (CFA). In contrast to CFA, CCA models theoretical constructs as composites instead of common factors. Besides the theoretical presentation of CCA and its assumptions, a Monte Carlo simulation is conducted which demonstrates that misspecifications of the composite model can be detected by the introduced test for overall model fit.
The second essay rises the question of how parameter differences can be assessed in the framework of partial least squares path modeling. Since the standard errors of the estimated parameters have no analytical closed-form, the t- and F-test known from regression analysis cannot be directly used to test for parameter differences. However, bootstrapping provides a solution to this problem. It can be employed to construct confidence intervals for the estimated parameter differences, which can be used for making inferences about the parameter difference in the population. To guide practitioners, guidelines were developed and demonstrated by means of empirical examples.
The third essay answers the question of how ordinal categorical indicators can be dealt with in partial least squares path modeling. A new consistent estimator is developed which combines the polychoric correlation and partial least squares path modeling to appropriately deal with the qualitative character of ordinal categorical indicators. The new estimator named ordinal consistent partial least squares combines consistent partial least squares with ordinal partial least squares. Besides its derivation, a Monte Carlo simulation is conducted which shows that the new estimator performs well in finite samples. Moreover, for illustration, an empirical example is estimated by ordinal consistent partial least squares.
The last essay introduces a new consistent estimator for polynomial factor models.
Similarly to consistent partial least squares, weights are determined to build stand-ins for the latent variables, however a non-iterative approach is used.
A Monte Carlo simulation shows that the new estimator behaves well in finite samples. / Die vorliegende Dissertation beschäftigt sich mit kompositenbasierten Schätzverfahren für Strukturgleichungsmodelle mit latenten Variablen sowie deren Weiterentwicklung und einhergehenden Problemen bei deren Verwendung in empirischen Studien.
Die Arbeit umfasst insgesamt fünf Kapitel. Neben einer kurzen Einleitung im ersten Kapitel beinhalten die verbleibenden Kapitel Teile der Ergebnisse meiner Promotion, die in Form von vier, teilweise schon veröffentlichten Aufsätzen präsentiert werden.
Der erste Aufsatz befasst sich mit einer alternativen Modellierungsweise der theoretischen Konstrukte in der Strukturgleichungsmodellierung. Während in den Sozial- und Verhaltenswissenschaften die theoretischen Konstrukte klassischerweise durch sogenannte common factors modelliert werden, stellt dies in manchen Situationen bzw. in anderen Wissenschaftsbereichen eine unplausible Annahme dar. In diesem Teil der Arbeit wird eine abgewandelte Form der konfirmatorischen Faktorenanalyse, die konfirmatorische Kompositenanalyse, vorgestellt, in welcher die theoretischen Konstrukte anstatt durch common factors mit Hilfe von Kompositen modelliert werden. Neben der Ausführung der theoretischen Grundlage wird durch eine Monte Carlo Simulation gezeigt, dass die konfirmatorische Kompositenanalyse geeignet ist, Fehlspezifikationen im zugrundeliegenden Kompositenmodell aufzudecken.
In der zweiten Studie wird die Frage aufgeworfen, wie Parameterunterschiede im Rahmen der partial least squares Pfadmodellierung getestet werden können. Da die Standardfehler des Schätzers keine analytisch-geschlossene Form besitzen, kann der aus der Regressionsanalyse bekannte t- bzw. F-Test nicht direkt für die Beantwortung dieser Frage verwendet werden. Einen Ausweg bietet das Bootstrapping, durch welches Konfidenzintervalle um den geschätzten Parameterunterschied konstruiert werden können. Mit Hife dieser können statistische Aussagen über den Parameterunterschied in der Grundgesamtheit gemacht werden. Das vorgestellte Verfahren wird anhand eines empirischen Beispiels demonstriert.
Der dritte Aufsatz dieser Arbeit geht der Frage nach, wie ordinale Indikatoren mit festen Kategorien in der partial least squares Pfadmodellierung berücksichtigt werden können. Es wird ein neues, konsistentes Schätzverfahren vorgestellt, das den qualitativen Charakter der ordinalen Variablen mittels der polychorischen Korrelation bei der Schätzung berücksichtigt. Der neue Schätzer trägt den Namen „ordinal consistent partial least squares“ und kombiniert die Verfahren consistent partial least squares und ordinal partial least squares. Neben der Darbietung des Schätzverfahrens wird mit Hilfe einer Monte Carlo Simulation gezeigt, dass das Verfahren ordinal consistent partial least squares geeignet ist, Modelle, die ordinale Indikatoren mit festen Kategorien enthalten, zu schätzen. Darüber hinaus wird ein empirisches Beispiel mit ordinal consistent partial least squares geschätzt.
Das letzte Kapitel widmet sich der Schätzung nicht-linearer Strukturgleichungsmodelle mit latenten Variablen, wobei sich die Nichtlinearität auf die latenten Variablen und nicht auf deren Parameter bezieht. In diesem Kontext wird ein neues Schätzverfahren vorgestellt, welches ähnlich wie consistent partial least squares funktioniert und konsistente Parameterschätzungen für rekursive, nicht-lineare Gleichungssysteme liefert. Im Gegensatz zu consistent partial least squares benötigt der vorgestellte Momentenschätzer kein iteratives Verfahren, um die Gewichte für die Bildung der Kompositen zu bestimmen. Es wird mit Hilfe einer Monte Carlo Simulation gezeigt, dass der Schätzer geeignet ist, nicht-lineare Strukturgleichungsmodelle mit latenten Variablen
zu schätzen.
|
4 |
Composite-based Structural Equation Modeling / Kompositenbasierte StrukturgleichungsmodellierungRademaker, Manuel Elias January 2020 (has links) (PDF)
Structural equation modeling (SEM) has been used and developed for decades across various domains and research fields such as, among others, psychology, sociology, and business research. Although no unique definition exists, SEM is best understood as the entirety of a set of related theories, mathematical models, methods, algorithms, and terminologies related to analyzing the relationships between theoretical entities -- so-called concepts --, their statistical representations -- referred to as constructs --, and observables -- usually called indicators, items or manifest variables.
This thesis is concerned with aspects of a particular strain of research within SEM -- namely, composite-based SEM. Composite-based SEM is defined as SEM involving linear compounds, i.e., linear combinations of observables when estimating parameters of interest.
The content of the thesis is based on a working paper (Chapter 2), a published refereed journal article (Chapter 3), a working paper that is, at the time of submission of this thesis, under review for publication (Chapter 4), and a steadily growing documentation that I am writing for the R package cSEM (Chapter 5). The cSEM package -- written by myself and my former colleague at the University of Wuerzburg, Florian Schuberth -- provides functions to estimate, analyze, assess, and test nonlinear, hierarchical and multigroup structural equation models using composite-based approaches and procedures.
In Chapter 1, I briefly discuss some of the key SEM terminology.
Chapter 2 is based on a working paper to be submitted to the Journal of Business Research titled “Assessing overall model fit of composite models in structural equation modeling”. The article is concerned with the topic of overall model fit assessment of the composite model. Three main contributions to the literature are made. First, we discuss the concept of model fit in SEM in general and composite-based SEM in particular. Second, we review common fit indices and explain if and how they can be applied to assess composite models. Third, we show that, if used for overall model fit assessment, the root mean square outer residual covariance (RMS_theta) is identical to another well-known index called the standardized root mean square residual (SRMR).
Chapter 3 is based on a journal article published in Internet Research called “Measurement error correlation within blocks of indicators in consistent partial least squares: Issues and remedies”. The article enhances consistent partial least squares (PLSc) to yield consistent parameter estimates for population models whose indicator blocks contain a subset of correlated measurement errors. This is achieved by modifying the correction for attenuation as originally applied by PLSc to include a priori assumptions on the structure of the measurement error correlations within blocks of indicators. To assess the efficacy of the modification, a Monte Carlo simulation is conducted. The paper is joint work with Florian Schuberth and Theo Dijkstra.
Chapter 4 is based on a journal article under review for publication in Industrial Management & Data Systems called “Estimating and testing second-order constructs using PLS-PM: the case of composites of composites”. The purpose of this article is threefold: (i) evaluate and compare common approaches to estimate models containing second-order constructs modeled as composites of composites, (ii) provide and statistically assess a two-step testing procedure to test the overall model fit of such models, and (iii) formulate recommendation for practitioners based on our findings. Moreover, a Monte Carlo simulation to compare the approaches in terms of Fisher consistency, estimated bias, and RMSE is conducted. The paper is joint work with Florian Schuberth and Jörg Henseler. / Strukturgleichungsmodellierung (SEM) wird seit Jahrzehnten in verschiedenen Bereichen und Forschungsgebieten wie zum Beispiel der Psychologie, der Soziologie und den Wirtschaftswissenschaften verwendet und weiterentwickelt. SEM umfasst dabei die Gesamtheit einer Reihe verwandter Theorien, mathematischer Modelle, Methoden, Algorithmen und Terminologien im Zusammenhang mit der Analyse der Beziehungen
zwischen theoretischen Entitäten - so genannten Konzepten -, ihrer statistischen Repräsentation - als Konstrukte bezeichnet - und Beobachtungsgrößen - üblicherweise Indikatoren, Items oder manifeste Variablen genannt.
Diese Arbeit befasst sich mit Aspekten eines bestimmten Forschungszweigs innerhalb der SEM, den Komposit-basierten SEM Verfahren. Komposit-basiertes SEM ist ein Überbegriff für alle SEM Methoden, die Kompositen - d.h. gewichtete Linearkombinationen aus Beobachtungen - zur Schätzung unbekannter Größen verwenden.
Der Inhalt der Arbeit basiert auf einem Arbeitspapier (Kapitel 2), einem veröffentlichten referierten Zeitschriftenartikel (Kapitel 3), einem weiteren Arbeitspapier (Kapitel 4) und einer stetig wachsenden Dokumentation, die ich für das R-Paket cSEM geschrieben habe, bzw. kontinuierlich weiterschreibe (Kapitel 5). Das Paket cSEM - geschrieben von mir und Florian Schuberth, meinem ehemaligen Kollegen an der Universität Würzburg - stellt Funktionen zur Verfügung, um lineare, nichtlineare, hierarchische und Multigruppen-Strukturgleichungsmodelle mit Hilfe von Komposit-basierten Ansätzen und Verfahren zu schätzen, zu analysieren, zu bewerten, zu testen und zu untersuchen.
In Kapitel 1 gehe ich zunächst kurz auf einige der wichtigsten SEM Begriffe ein.
Kapitel 2 basiert auf einem Arbeitspapier mit dem Titel „Assessing overall model fit of composite models in structural equation modeling“, das im Journal of Business Research eingereicht werden wird. Der Artikel befasst sich mit dem Thema der Bewertung der Gesamtgüte des Modells (eng. overall model fit) im Kontext des Komposit-Modells. Das Papier leistet drei zentrale Beiträge zur Literatur zu diesem Thema. Erstens wird das Konzept der Modellgüte in der SEM im Allgemeinen und der Komposit-basierten SEM im Besonderen eingehend erörtert. Zweitens wird auf gängige Fit-Indizes eingegangen und erläutert, ob und wie sie zur Beurteilung eines Komposit-Modells angewendet werden können. Drittens wird gezeigt, dass der root mean square outer residual covariance (RMS_theta) identisch mit einem anderen bekannten Index, dem standardized root mean square residual (SRMR) ist, falls der RMS_theta als Maß für die Modellanpassungsgüte verwendet werden soll.
Kapitel 3 basiert auf einem in Internet Research veröffentlichten Zeitschriftenartikel mit dem Titel „Measurement error correlation within blocks of indicators in consistent partial least squares: Issues and remedies“. Der Artikel entwickelt das consistent partial least squares (PLSc) Verfahren weiter, um konsistente Parameterschätzungen für Populationsmodelle zu erhalten, deren Indikatorblöcke korrelierte Messfehler enthalten. Dies wird erreicht, indem die Korrektur für die Dämpfung (eng. attenuation), wie sie ursprünglich von PLSc angewandt wird, so modifiziert wird, dass sie a priori Annahmen über die Struktur der Messfehlerkorrelationen innerhalb der Indikatorblöcke enthält. Um die statistische Gültigkeit der Modifikation zu beurteilen, wird eine Monte Carlo Simulation durchgeführt. Das Papier wurde gemeinsam mit Florian Schuberth und Theo Dijkstra verfasst.
Kapitel 4 basiert auf einem zur Veröffentlichung in Industrial Management & Data Systems anstehenden Zeitschriftenartikel mit dem Titel „Estimating and testing second order constructs using PLS-PM: the case of composites of composites“. Der Zweck dieses Artikels ist ein dreifacher: (i) Bewertung und Vergleich gängiger Ansätze zur Schätzung von Modellen, die Konstrukte zweiter Ordnung enthalten, die als Komposite von Kompositen modelliert wurden; (ii) ein zweistufiges Testverfahren vorzustellen und statistisch zu bewerten, um die allgemeine Modellanpassung solcher Modelle zu testen und (iii) auf der Grundlage unserer Ergebnisse Empfehlungen für Praktiker zu formulieren. Darüber hinaus wurde eine Monte Carlo Simulation durchgeführt, um die Ansätze in Bezug auf Fisher-Konsistenz, geschätzte Verzerrung und RMSE zu vergleichen. Das Papier wurde gemeinsam mit Florian Schuberth und Jörg Henseler verfasst.
Kapitel 5 stellt das R-Paket cSEM vor. Zum Zeitpunkt der Einreichung dieser Dissertation zur Begutachtung ist cSEM im Comprehensive R Archive Network (CRAN) als Version 0.2.0 verfügbar.
|
5 |
Spatio-temporal decomposition of bioelectrical brain signalsNaeem, Muhammad January 2008 (has links)
Zugl.: Graz, Techn. Univ., Diss., 2008
|
6 |
Componential analysis of Hausa verbs of motion : markedness and deixis /Angulu, Elizabeth Mama. January 1985 (has links)
Thesis (Ed. D.)--Teachers College, Columbia University, 1985. / Typescript: issued also on microfilm. Sponsor: Clifford Hill. Dissertation Committee: Herve Varenne. Bibliography: leaves 111-125.
|
7 |
DFG-Projekt (Rh 14/8-1) Komponenten der Lernmotivation in Mathematik : AbschlussberichtRheinberg, Falko, Wendland, Mirko January 2003 (has links)
Abschlussbericht zum DFG-Projekt "Veränderung der Lernmotivation in Mathematik und Physik: eine Komponentenanalyse und der Einfluss elterlicher sowie schulischer Kontextfaktoren"
Abstract:
Dass die Lernmotivation besonders in mathematisch-naturwissenschaftlichen Fächern im Verlauf der Sekundarschulzeit sinkt, kann als gesichert gelten (Krapp, 1998). Allerdings ergibt sich bei genauerem Hinsehen ein recht differenziertes Bild. Dies betrifft insbesondere die verschiedenen Komponenten von Lernmotivation (z. B. Erfolgserwartungen, Nützlichkeiten/Instrumentalitäten, intrinsische vs. extrinsische Folgenanreize, Sachinteressen, Selbstkontrollfunktionen etc.), die offenbar nicht gleichermaßen betroffen sind. Weiterhin wurden auch unterschiedliche Veränderungen je nach Fach, Klassenstufe und Geschlecht gefunden (z. B. Fend, 1997; Pekrun, 1993). Überdies sind hier individuell unterschiedliche Verlaufstypen der Lernmotivationsveränderung zu erwarten (Fend, 1997; Rheinberg, 1980). Je nachdem, aufgrund welcher Komponenten ein Absinken der Lernmotivation zustande kommt, sind ganz andere Interventionsmaßnahmen angezeigt. Von daher ist ein Instrumentarium erforderlich, das die einzelnen Komponenten der Lernmotivation in mathematisch-naturwissenschaftlichen Fächern zu erfassen erlaubt.
Ein solches Verfahren soll in einem zweijährigen Projekt theorieverankert entwickelt werden. Es stützt sich zunächst auf das Erweiterte Kognitive Modell zur Lernmotivation (Heckhausen & Rheinberg, 1980; Rheinberg, 1989), des weiteren auf Interessenkonzepte (Krapp, 1992, 1998) sowie auf die Handlungskontroll- bzw. die PSI-Theorie (Kuhl, 1987, 1998). Es soll die Lernmotivation in ihren Komponenten so erfassen, dass spezifische Interventionen hergeleitet bzw. schon bewährte fallbezogen platziert werden können. Solche Interventionen sind für mögliche Anschlussprojekte im DFG-Schwerpunktprogramm "Bildungsqualität" vorgesehen. In einem altersgestaffelten einjährigen Längsschnitt wird im jetzigen Projekt mit diesem Instrument die Veränderung dieser Komponenten in den Fächern Mathematik und Physik auf der Sekundarstufe I erhoben. Gewonnen werden dabei klassenstufenspezifische Veränderungen der Lernmotivationskomponenten sowie (via Typenanalysen) verschiedene Entwicklungstypen in der mathematisch-naturwissenschaftlichen Lernmotivation. Dies sind Basisinformationen, die für die Entwicklung, Platzierung und Effektsicherung nachfolgender Interventionsmaßnahmen benötigt werden. Um im Vorfeld zwei (von vielen) Ansatzpunkten solcher Interventionen näher abzuklären, wird bereits in der ersten Projektphase die Wirkung zweier Kontextfaktoren untersucht. Hier wird (a) das mathematisch-naturwissenschaftliche Anregungsklima des Elternhauses sowie (b) die Bezugsnorm-Orientierung des Mathematik- bzw. Physiklehrers erfasst. Von beiden Kontextfaktoren sind Auswirkungen auf spezifische Komponenten der mathematisch-naturwissenschaftlichen Lernmotivation zu erwarten. Dies ist jedoch vorweg genauer abzuklären, ehe man die Kosten von Interventionen investiert.
Das Instrumentarium (PMI) wird von Mai bis September 2000 entwickelt. Die einjährige Längsschnittstudie beginnt dann im Oktober 2000. Geplant sind drei Messzeitpunkte jeweils auf den Klassenstufen 5 bis 9 (Kombiniertes Längs- und Querschnittdesign)
|
8 |
Approaches to analyse and interpret biological profile dataScholz, Matthias January 2006 (has links)
Advances in biotechnologies rapidly increase the number of molecules of a cell which can be observed simultaneously. This includes expression levels of thousands or ten-thousands of genes as well as concentration levels of metabolites or proteins.
<br><br>
Such Profile data, observed at different times or at different experimental conditions (e.g., heat or dry stress), show how the biological experiment is reflected on the molecular level. This information is helpful to understand the molecular behaviour and to identify molecules or combination of molecules that characterise specific biological condition (e.g., disease).
<br><br>
This work shows the potentials of component extraction algorithms to identify the major factors which influenced the observed data. This can be the expected experimental factors such as the time or temperature as well as unexpected factors such as technical artefacts or even unknown biological behaviour.
<br><br>
Extracting components means to reduce the very high-dimensional data to a small set of new variables termed components. Each component is a combination of all original variables. The classical approach for that purpose is the principal component analysis (PCA).
<br><br>
It is shown that, in contrast to PCA which maximises the variance only, modern approaches such as independent component analysis (ICA) are more suitable for analysing molecular data. The condition of independence between components of ICA fits more naturally our assumption of individual (independent) factors which influence the data. This higher potential of ICA is demonstrated by a crossing experiment of the model plant <i>Arabidopsis thaliana</i> (Thale Cress). The experimental factors could be well identified and, in addition, ICA could even detect a technical artefact.
<br><br>
However, in continuously observations such as in time experiments, the data show, in general, a nonlinear distribution. To analyse such nonlinear data, a nonlinear extension of PCA is used. This nonlinear PCA (NLPCA) is based on a neural network algorithm. The algorithm is adapted to be applicable to incomplete molecular data sets. Thus, it provides also the ability to estimate the missing data. The potential of nonlinear PCA to identify nonlinear factors is demonstrated by a cold stress experiment of <i>Arabidopsis thaliana</i>.
<br><br>
The results of component analysis can be used to build a molecular network model. Since it includes functional dependencies it is termed functional network. Applied to the cold stress data, it is shown that functional networks are appropriate to visualise biological processes and thereby reveals molecular dynamics. / Fortschritte in der Biotechnologie ermöglichen es, eine immer größere Anzahl von Molekülen in einer Zelle gleichzeitig zu erfassen. Das betrifft sowohl die Expressionswerte tausender oder zehntausender Gene als auch die Konzentrationswerte von Metaboliten oder Proteinen.
<br><br>
Diese Profildaten verschiedener Zeitpunkte oder unterschiedlicher experimenteller Bedingungen (z.B. unter Stressbedingungen wie Hitze oder Trockenheit) zeigen, wie sich das biologische Experiment auf molekularer Ebene widerspiegelt. Diese Information kann genutzt werden, um molekulare Abläufe besser zu verstehen und um Moleküle oder Molekül-Kombinationen zu bestimmen, die für bestimmte biologische Zustände (z.B.: Krankheit) charakteristisch sind.
<br><br>
Die Arbeit zeigt die Möglichkeiten von Komponenten-Extraktions-Algorithmen zur Bestimmung der wesentlichen Faktoren, die einen Einfluss auf die beobachteten Daten ausübten. Das können sowohl die erwarteten experimentellen Faktoren wie Zeit oder Temperatur sein als auch unerwartete Faktoren wie technische Einflüsse oder sogar unerwartete biologische Vorgänge.
<br><br>
Unter der Extraktion von Komponenten versteht man die Reduzierung dieser stark hoch-dimensionalen Daten auf wenige neue Variablen, die eine Kombination aus allen ursprünglichen Variablen darstellen und als Komponenten bezeichnet werden. Die Standard-Methode für diesen Zweck ist die Hauptkomponentenanalyse (PCA).
<br><br>
Es wird gezeigt, dass - im Vergleich zur nur die Varianz maximierenden PCA - moderne Methoden wie die Unabhängige Komponentenanalyse (ICA) für die Analyse molekularer Datensätze besser geeignet sind. Die Unabhängigkeit von Komponenten in der ICA entspricht viel besser unserer Annahme individueller (unabhängiger) Faktoren, die einen Einfluss auf die Daten ausüben. Dieser Vorteil der ICA wird anhand eines Kreuzungsexperiments mit der Modell-Pflanze <i>Arabidopsis thaliana</i> (Ackerschmalwand) demonstriert. Die experimentellen Faktoren konnten dabei gut identifiziert werden und ICA erkannte sogar zusätzlich einen technischen Störfaktor.
<br><br>
Bei kontinuierlichen Beobachtungen wie in Zeitexperimenten zeigen die Daten jedoch häufig eine nichtlineare Verteilung. Für die Analyse dieser nichtlinearen Daten wird eine nichtlinear erweiterte Methode der PCA angewandt. Diese nichtlineare PCA (NLPCA) basiert auf einem neuronalen Netzwerk-Algorithmus. Der Algorithmus wurde für die Anwendung auf unvollständigen molekularen Daten erweitert. Dies ermöglicht es, die fehlenden Werte zu schätzen. Die Fähigkeit der nichtlinearen PCA zur Bestimmung nichtlinearer Faktoren wird anhand eines Kältestress-Experiments mit <i>Arabidopsis thaliana</i> demonstriert.
<br><br>
Die Ergebnisse aus der Komponentenanalyse können zur Erstellung molekularer Netzwerk-Modelle genutzt werden. Da sie funktionelle Abhängigkeiten berücksichtigen, werden sie als Funktionale Netzwerke bezeichnet. Anhand der Kältestress-Daten wird demonstriert, dass solche funktionalen Netzwerke geeignet sind, biologische Prozesse zu visualisieren und dadurch die molekularen Dynamiken aufzuzeigen.
|
9 |
Competition improves robustness against loss of informationKolankeh, Arash Kermani, Teichmann, Michael, Hamker, Fred H. 21 July 2015 (has links) (PDF)
A substantial number of works have aimed at modeling the receptive field properties of the primary visual cortex (V1). Their evaluation criterion is usually the similarity of the model response properties to the recorded responses from biological organisms. However, as several algorithms were able to demonstrate some degree of similarity to biological data based on the existing criteria, we focus on the robustness against loss of information in the form of occlusions as an additional constraint for better understanding the algorithmic level of early vision in the brain. We try to investigate the influence of competition mechanisms on the robustness. Therefore, we compared four methods employing different competition mechanisms, namely, independent component analysis, non-negative matrix factorization with sparseness constraint, predictive coding/biased competition, and a Hebbian neural network with lateral inhibitory connections. Each of those methods is known to be capable of developing receptive fields comparable to those of V1 simple-cells. Since measuring the robustness of methods having simple-cell like receptive fields against occlusion is difficult, we measure the robustness using the classification accuracy on the MNIST hand written digit dataset. For this we trained all methods on the training set of the MNIST hand written digits dataset and tested them on a MNIST test set with different levels of occlusions. We observe that methods which employ competitive mechanisms have higher robustness against loss of information. Also the kind of the competition mechanisms plays an important role in robustness. Global feedback inhibition as employed in predictive coding/biased competition has an advantage compared to local lateral inhibition learned by an anti-Hebb rule.
|
10 |
Competition improves robustness against loss of informationKolankeh, Arash Kermani, Teichmann, Michael, Hamker, Fred H. 21 July 2015 (has links)
A substantial number of works have aimed at modeling the receptive field properties of the primary visual cortex (V1). Their evaluation criterion is usually the similarity of the model response properties to the recorded responses from biological organisms. However, as several algorithms were able to demonstrate some degree of similarity to biological data based on the existing criteria, we focus on the robustness against loss of information in the form of occlusions as an additional constraint for better understanding the algorithmic level of early vision in the brain. We try to investigate the influence of competition mechanisms on the robustness. Therefore, we compared four methods employing different competition mechanisms, namely, independent component analysis, non-negative matrix factorization with sparseness constraint, predictive coding/biased competition, and a Hebbian neural network with lateral inhibitory connections. Each of those methods is known to be capable of developing receptive fields comparable to those of V1 simple-cells. Since measuring the robustness of methods having simple-cell like receptive fields against occlusion is difficult, we measure the robustness using the classification accuracy on the MNIST hand written digit dataset. For this we trained all methods on the training set of the MNIST hand written digits dataset and tested them on a MNIST test set with different levels of occlusions. We observe that methods which employ competitive mechanisms have higher robustness against loss of information. Also the kind of the competition mechanisms plays an important role in robustness. Global feedback inhibition as employed in predictive coding/biased competition has an advantage compared to local lateral inhibition learned by an anti-Hebb rule.
|
Page generated in 0.0738 seconds