• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Re-Expression of T-Type Calcium Channels Minimally Affects Cardiac Contractility and Activates Pro-Survival Signaling Pathways in the Myocardium

Jaleel, Naser January 2010 (has links)
The role of T-type calcium channels (TTCCs) in the heart is unclear. TTCCs are transiently expressed throughout the neonatal heart during a period of rapid cardiac development. A few weeks postnatally, TTCCs are no longer found in ventricular myocytes (VMs) and calcium influx via TTCCs (ICa,T) is only detected in the SA node and Purkinje system. However, pathologic cardiac stress is associated with re-expression of TTCCs in VMs. Whether ICa,T in this setting promotes cardiac growth or exacerbates cardiac function is a topic of debate. The focus of this thesis work was to examine the effect of TTCC re-expression in the normal and diseased myocardium. Our experiments were performed in a transgenic mouse model with inducible, cardiac-specific expression of α1G TTCCs. While both the α1G and α1H TTCC subtypes re-appear during cardiac disease, we specifically evaluated the effects of α1G TTCCs since mRNA levels of this TTCC subtype are markedly elevated during cardiac pathology. We found that transgenic mice with α1G overexpression had robust ICa,T with biophysical properties similar to those published in previous studies. α1G mice had a small increase in cardiac function and showed no evidence of cardiac histopathology or increased mortality. These findings were in contrast to the phenotype of transgenic mice with augmented L-type calcium channel (LTCC) activity secondary to overexpression of the β2a regulatory subunit. While the magnitude of calcium influx in α1G and β2a VMs was similar, we found that cardiac contractility of β2a mice was significantly greater than α1G mice. Also, β2a mice had significant cardiac fibrosis, myocyte death, and premature lethality compared to the benign phenotype of α1G mice. We showed that the phenotypic differences are likely related to the differential spatial localization of T- and LTCCs. Whereas α1G TTCCs were principally localized to the surface sarcolemma, LTCCs were primarily found in the transverse tubules in close proximity to the sites of sarcoplasmic reticulum calcium release. We evaluated the effect of TTCC expression during cardiac disease by inducing myocardial infarction (MI) in α1G mice. Acutely (1-week post MI), α1G mice showed similar worsening of cardiac function and mortality rates compared to control post-infarct mice. However, α1G hearts had smaller infarct sizes which correlated with increased Akt and NFAT activation in α1G than control hearts. After chronic heart failure, i.e. 7- weeks post-infarction, α1G hearts had significant hypertrophic response as determined by increased HW/BW ratio, myocyte cross-sectional area, as well as NFAT and Akt activity. Finally, α1G mice had a small survival benefit than control mice, which while statistically non-significant, suggests that TTCC re-expression does not exacerbate cardiac function as hypothesized by some investigators. We conclude that TTCCs play a minimal role in cardiac function and activate pro-survival signaling pathways in the myocardium. / Physiology
2

Modulation de la transmission nociceptive par les récepteurs métabotropiques du glutamate de groupe I et les canaux calciques de type L dans la moelle épinière : approche électrophysiologique in vivo / Modulation of nociceptive transmission by group I metabotropic glutamatergic receptors and L-type calcium channels in the spinal cord : electrophysiological approach in vivo

Radwani, Houda 17 December 2016 (has links)
La douleur est une expérience désagréable qui fait partie de notre vie. Quand elle ne dure pas longtemps, elle est un signal d’alarme pour notre organisme. Cependant malheureusement, dans certaines conditions pathologiques, elle se prolonge dans le temps, elle devient alors chronique, intolérable, et nécessite un traitement qui ne suffit pas toujours à soulager le patient, un traitement qui dispose une efficacité limitée avec des effets secondaires indésirables non négligeables. Il est crucial alors d’améliorer nos connaissances sur les mécanismes enclenchés dans la transmission douloureuse pour développer des nouveaux outils thérapeutiques. Dans ce contexte, des études menées ces dernières années dans notre laboratoire ont indiqué que les neurones de la corne dorsale de la moelle épinière présentent des propriétés intrinsèques d’amplification des messages afférents douloureux qui reposent notamment sur des courants calciques via les canaux calciques de type L. Pour cela, le rôle de ces canaux L et plus particulièrement le rôle exact de chaque canal : Cav1.2 et Cav1.3, les deux seuls iso-formes des canaux L exprimés dans la corne dorsale de la moelle épinière, dans la sensibilisation douloureuse a été étudié dans la première partie de ce présent travail. Nous avons étudié chez le rat, in vivo, et en utilisant une approche computationnelle pour simuler l’activité neuronale, l’impact de ces courants Cav1.2 et Cav1.3, à la fois sur le phénomène de Wind-up, une forme de sensibilisation à court terme, et sur un modèle de neuropathie périphérie (SNL) caractérisé par une forme de sensibilisation à long terme. Nous avons pu montrer que la présence de Cav1.3 (mais pas de Cav1.2) est crucial pour l’expression du Wind-up quel que soit le contexte physiopathologique (contrôle/neuropathie), alors que la suppression de Cav1.2 (mais pas de Cav1.3) diminue significativement l’expression du comportement douloureux dans le contexte de neuropathie. D’autre part, il a été montré également dans notre laboratoire que les récepteurs métabotropiques de groupe I (mGluRs I), récepteurs du Glutamate, principal neurotransmetteur excitateur dans la transmission nociceptive, interagissent avec ces canaux L en modulant leur activité. Dans des conditions pathologiques telles que les conditions des douleurs inflammatoires le rôle de ces canaux L est controversé, et si l’interaction entre les mGluRs I et les canaux L est toujours présente dans ces conditions inflammatoires est mal connue. Nous avons décidé alors d’étudier dans la deuxième partie de ce travail le rôle de ces canaux L, et leur interaction avec les mGluRs I dans les conditions des douleurs inflammatoires. En utilisant des approches : l’électrophysiologie extracellulaire in vivo, pharmacologie, comportement, les injections intrathécales, et biologie moléculaire, nous avons montré que l’activation pharmacologique des mGluRs I augmente la transmission nociceptive et que cet effet nécessite l’activation des canaux calciques de type L dans les conditions contrôles. D'une façon inattendue, dans le contexte d’inflammation, nos résultats ont montré que l’activation des mGluRs I induit un effet totalement opposé anti-nociceptif et que cet effet est indépendant des canaux L. En plus, nous confirmons que le blocage des canaux L est sans effet dans le cas d’inflammation. D’autre part, nous avons montré que l’effet contradictoire dû à l’activation des mGluRs I passe par un renforcement de la transmission inhibitrice. En conclusion, nos résultats montrent l’intérêt de cibler les canaux calciques de type L et plus précisément le canal Cav1.2 dans le cadre des douleurs chroniques neuropathiques. De plus, nous montrons aussi que les mGluRs I pourraient être des bons candidats thérapeutiques dans le contexte inflammatoire. / Pain is an unpleasant experience which is part of our lives. When it does not last long time, it is often a warning sign for our organism. However unfortunately, in some pathological cases, it can last a long time, and become chronic, intolerable, and requires a treatment that is not always enough to relieve the patient, a treatment that has limited efficacy with significant undesirable side effects. It is important now to ameliorate our knowledge about the mechanisms implicated in pain transmission to develop new therapeutic tools. In this context, many studies conducted in recent years in our laboratory have indicated that the neurons in the dorsal horn of the spinal cord express intrinsic amplification properties of afferents input rely on calcium currents via the L type calcium channels. For that, the role of L type calcium channels and especially the role exact of each canal: Cav1.2 and Cav1.3, the two only iso-forms of L channels expressed in the dorsal horn of the spinal cord, in the painful sensitization has been studied in the first part of this present work. We studied in rat, in vivo, and by using a computational approach to simulate neuronal activity, the impact of these currents Cav1.2 and Cav1.3, both on the phenomenon of Wind-up, a form of short term sensitization, and in the model of a peripheral neuropathy model (SNL) characterized by a form of long-term sensitization. We showed that the presence of Cav1.3 (but not the Cav1.2) is important for Wind-up’s expression regardless of the physio-pathological context (control / neuropathy), whereas the removal of Cav1.2 (but not Cav1.3) decreases significantly the expression of the pain behavior in the context of neuropathy. In another side, it has been shown in our laboratory that group I metabotropic glutamatergic receptors (mGluRs I), receptors of Glutamate, the main excitatory neurotransmitter in nociceptive transmission, interact with L channels by modulating their activity. In pathological condition such in the condition of inflammatory pain the role of these channels L is controversial, and if the interaction between mGluRs I and L channels is always present in these inflammatory conditions is poorly known. We decided then to study in the second part of this work the role of these channels, and their interaction with mGluRs I in the condition of inflammatory pain. By using electrophysiological extracellular recording, pharmacology, behavior, intrathecal injections, and molecular biology, we showed that pharmacological activation of mGluRs I increase the nociceptive transmission and that this effect requires the activation of L type calcium channels in control conditions. Unexpectedly, in the context of the inflammation, our results show that activation of mGluRs I induce an anti-nociceptive effect and this effect is independent of L channels. Moreover, we confirmed that the blockade of L calcium channels is without effect in case of the inflammation. Furthermore, we showed that the contradictory effect due to the activation of mGluRs I pass through a strengthening of inhibitory transmission. In conclusion, our results show the interest to target L type calcium channels and more specifically the Cav1.2 channel in case of neuropathic chronic pain. We also show that mGluRs I could be good therapeutic candidates in the inflammatory context.
3

Envolvimento dos canais para cálcio tipo-L na resposta cardiodepressora do farnesol em coração de rato / L-type calcium channels involvement in rat cardiodepressant response by farnesol

Souza, Diego Santos de 04 March 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The farnesol (C15H26O) is a sesquiterpene alcohol found in herbs and essential oils. Research show some beneficial properties of farnesol as: antioxidant, anti-inflammatory and chemopreventive properties. However, the farnesol futher inhibition of activity of L-type calcium channels in smooth muscle. This study sought to analyze the involvement of calcium channels L-type in the cardiodepressant farnesol response in the rat heart. To this, contractile studies were conducted on left atria drawn to rest tension 5mN (0,5gf) and subjected to field stimulation with above-threshold current pulses of the 1 Hz, kept in isolated organ vessel, submerged in Krebs-Henseleit solution (8 mL) and aerated with carbogênica mixture (95% O2 and 5% CO2). The atrial contraction force was capture by an isometric transducer. Electrocardiographic recordings were performe on isolated heart, aortic perfusion under a constant flow (10 ml / min) Langendorff type system. The hearts were keep spontaneously beating, to determine the heart rate, and in heart stimulated were determined PR interval (PRI), QT (QTi) and complex QRS. Left ventricular pressure was determined in the heart stimulated electrically by means of a balloon inflated with water at a pressure of 15 cmHg. In rat left atrium, the farnesol response to the contraction strength showed a negative inotropic effect, reducing the contraction force at 41.63% at the maximum concentration used, with an EC50 of 2.84 ± 0.19 mM. To evaluate the effect of farnesol of the positive inotropic response of CaCl2 and (±)-Bay K8644 was observed that the farnesol shifted to the right CaCl2 concentration-response curve and decreased maximum efficiency (100% to 23%) and abolished curve of (±)-Bay K8644. TEA was use to evaluate the role of K+ channels in the negative inotropic response and the maximum effect by farnesol (41.63 to 63.02%) was increased. In isolated heart, there was an increase of PRI, QTi and QRS complex, and reduced left ventricular pressure (37, 38%) and heart rate (25.22%). Thus, farnesol exerts inotropic and negative chronotropic responses in the heart by reducing current to the L-type Ca2+. / O farnesol (C15H26O) é um álcool sesquiterpênico encontrado em óleos essenciais e ervas aromáticas. Pesquisas evidenciam algumas propriedades benéficas do farnesol como: propriedades antioxidantes, anti-inflamatórias e quimiopreventivas. Entretanto, o farnesol promoveu inibição dos canais de cálcio tipo-L em músculo liso. Neste trabalho procurou-se analisar os efeitos do farnesol sobre os mecanismos contráteis e eletrofisiológicos sobre o coração de rato. Para esse fim, os estudos contráteis foram realizados em átrios esquerdo estirados a para uma tensão de repouso de 5mN (0,5gf) e submetidos a estimulação de campo com pulsos de corrente supralimiares de 1 Hz, mantido em cuba para órgão isolado, submerso em solução de Krebs-Henseleit (8 mL) e aerado com mistura carbogênica (95 % O2 e 5 % CO2). A força de contração atrial foi captada por um transdutor isométrico. Os registros eletrocardiográficos foram obtidos em coração isolado, sob perfusão aórtica de fluxo constante (10 mL/min), em sistema de Langendorff. Os corações foram mantidos com batimento espontâneo, para determinar a frequência cardíaca, e em corações estimulados foram determinados os intervalos PR (PRi), QT (QTi) e complexo QRS. A pressão ventricular esquerda foi determinada, em coração estimulado eletricamente, por meio de um balonete insuflado com água até uma pressão de 15 cmHg. Em átrio esquerdo de rato, a resposta do farnesol sobre a força de contração apresentou efeito inotrópico negativo, diminuindo a força de contração em 41,63% na concentração máxima usada, apresentando uma CE50 de 2,843 ± 0,19 mM. Ao avaliar o efeito do farnesol sobre a resposta inotrópica positiva do CaCl2 e (±)-BAY K8644 foi observado que o farnesol deslocou para direita a curva concentração-resposta do CaCl2 e diminuiu a eficácia máxima (100% para 23%) e aboliu a curva do (±)-BAY K8644. Para avaliar a participação dos canais para potássio na resposta inotrópica negativa foi utilizado TEA tendo aumento da eficácia máxima do farnesol de 41,63 para 63,02%. Em coração isolado, foi observado aumento do PRi, QTi e complexo QRS, e redução da pressão ventricular esquerda (37,38%) e frequência cardíaca (25,22%). Assim sendo, o farnesol exerce respostas inotrópicas e cronotrópicas negativas no coração, por redução das correntes para Ca2+ tipo-L.
4

Modification of ion channel auxiliary subunits in cardiac disease

Al Katat, Aya 10 1900 (has links)
L’infarctus du myocarde (IM) survenant après l’obstruction de l’artère coronaire est la cause principale des décès cardiovasculaires. Après l’IM, le coeur endommagé répond à l’augmentation du stress hémodynamique avec une cicatrice et une hypertrophie dans la région non-infarcie du myocarde. Dans la région infarcie, la cicatrice se forme grâce au dépôt du collagène. Pendant formation de la cicatrice, les cardiomyocytes ventriculaires résidant dans la région non-infarcie subissent une réponse hypertrophique après l’activation chronique due au système sympathique et à l’angiotensine II. La cicatrisation préserve l’intégrité structurale du coeur et l'hypertrophie des cardiomyocytes apporte un support ionotropique. Le canal CaV1.2 joue un rôle dans la réponse hypertrophique après l’IM. L’activation du CaV1.2 déclenche la signalisation dépendante de Ca2+ induisant l’hypertrophie. Cependant, il est rapporté que l’ouverture des canaux potassiques (KATP) ATP sensitifs joue un rôle sélectif dans l’expansion de la cicatrice après IM. Malgré leur expression dans les coeurs mâles, les KATP fournissent une cardioprotection sexe dépendante limitant l’expansion de la cicatrice chez les femelles. L’administration de rapamycine aux rates ayant subi un infarctus produit l’expansion de la cicatrice, soutenant la relation possible entre la cible de rapamycine, mTORC1 et les KATP dans la cardioprotection sexe spécifique. Effectivement, dans les cellules pancréatiques α, la signalisation mTORC1 était couplée à l'activation du KATP. Cependant, le lien entre mTORC1 et les canaux KATP dans le coeur reste inconnu. L'objectif de la thèse est d’examiner le rôle des canaux ioniques dans le remodelage cardiaque post-IM, surtout des canaux calciques dans l'hypertrophie et d'élucider la relation entre les KATP et mTORC1. L’hypothèse première teste que l’hypertrophie médiée par le système sympathique des cardiomyocytes ventriculaires des rats néonataux (NRCM) produit une augmentation de l’influx calcique après une augmentation des sous-unités du CaV1.2. Le traitement de norépinéphrine (NE) quadruple l’amplitude du courant calcique type L et double l’expression protéique des sous unités de CaVα2δ1 et CaVβ3. L’hypertrophie des NRCM au NE s’associe à une augmentation de la phosphorylation de la Kinase ERK 1/2. Le β1-bloqueur metoprolol et l’inhibiteur ii de ERK1/2 diminuent l’effet de NE sur CaVα2δ1. Cependant, l’augmentation de CaVβ3 et de la réponse hypertrophique persiste. Ainsi, le signal β1-adrenergique à travers ERK augmente les sous-unités CaVα2δ1 outre l’hypertrophie. L’autre hypothèse examine la spécificité du sexe sur l’expansion cicatricielle médiée par rapamycine et l’influence de mTOR sur l’expression de KATP. Rapamycin augmente la surface de la cicatrice et inhibe la phosphorylation de mTOR chez les coeurs de femelles. Dans les coeurs des deux sexes, la phosphorylation de mTOR et l’expression de KATP, Kir6.2 et SUR2A sont similaires. Cependant, une grande inactivation de la tubérine et une faible expression de raptor sont détectées chez les femelles. Le traitement à l’ester de phorbol des NRCM induit l’hypertrophie, augmente la phosphorylation de p70S6K et l’expression SUR2A. Le prétraitement par Rapamycine atténue chacune des réponses. Rapamycin démontre un patron d’expansion cicatriciel sexe spécifique et une régulation de phosphorylation de mTOR dans IM. Aussi, l’augmentation de SUR2A dans les NRCM traités par PDBu révèle une interaction entre mTOR et KATP. / Myocardial infarction (MI) secondary to the obstruction of the coronary artery is the main cause of cardiovascular death. Following MI, the damaged heart adapts to the increased hemodynamic stress via formation of a scar and a hypertrophic response of ventricular cardiomyocytes in the non-infarcted myocardium. In the infarcted region, a scar is formed via the rapid deposition of collagen. With ongoing scar formation, ventricular cardiomyocytes in the non-infarcted myocardium undergo a hypertrophic response secondary to the chronic activation by the sympathetic system and angiotensin II. Collectively, scar formation and cardiomyocyte hypertrophy preserve the structural integrity of the heart and provide inotropic support, respectively. CaV1.2 channels play a significant role in the hypertrophic response post-MI. Notably, the activation of CaV1.2 channel triggers Ca2+-dependent signaling that induces hypertrophy. By contrast, the opening of ATP-sensitive potassium (KATP) channels was shown to partake in selective scar expansion following MI. Notwithstanding its expression in male hearts, KATP channels endow a sex-dependent cardioprotection limiting scar expansion selectively in females. Moreover, administration of the macrolide rapamycin to the infarcted female rat heart led to scar expansion, supporting the possible relationship between the target of rapamycin, mTORC1 and KATP channels in providing sex-specific cardioprotection. Indeed, in pancreatic-α cells, mTORC1 signaling was coupled to KATP channel activation. However, whether mTORC1 targets KATP channels in the heart remains unknown. Thus, the AIM of the thesis was to explore the role of ion channels in cardiac remodeling post-MI by specifically addressing the role of Ca channels in cardiomyocyte hypertrophy and elucidate the potential relationship between KATP channels and mTORC1 signaling. The first study tested the hypothesis that hypertrophied neonatal rat ventricular cardiomyocytes (NRVMs) following sympathetic stimulation translated to an increase in calcium influx secondary to the augmentation of CaV1.2 channel subunits. NE treatment led to a 4-fold increase of L-type Ca2+ peak current associated with a 2-fold upregulation of CaVα2δ1 and CaVβ3 protein subunits in hypertrophied NRVMs. The hypertrophic response of NNVMs to NE was associated with the increased phosphorylation of extracellular regulated kinase (ERK1/2). The β1-blocker metoprolol and the ERK1/2 inhibitor suppressed NE-mediated protein upregulation of CaVα2δ1 whereas CaVβ3 upregulation and the hypertrophic response persisted. Therefore, sympathetic mediated β1-adrenergic signaling via ERK selectively upregulated the CaVα2δ1 subunit independent of NRVM hypertrophy. The second study tested the hypothesis that rapamycin-mediated scar expansion was sexspecific and mTOR influenced KATP channel subunit expression. Rapamycin administration translated to scar expansion and inhibited mTOR phosphorylation exclusively in females. In normal adult male and female rat hearts, mTOR phosphorylation and protein levels of KATP channel subunits Kir6.2 and SUR2A were similar. However, greater tuberin inactivation and reduced raptor protein levels were detected in females. NRVMs treated with a phorbol ester induced hypertrophy, increased p70S6K phosphorylation and SUR2A protein levels and rapamycin pretreatment attenuated each response. Thus, rapamycin administration to MI rats unmasked a sex-specific pattern of scar expansion and highlighted the disparate regulation of mTOR phosphorylation. Moreover, rapamycin-dependent upregulation of SUR2A in PDButreated NRVMs revealed a novel interaction between mTOR and KATP channel subunit expression

Page generated in 0.0736 seconds