321 |
Effect of Golf Course Turfgrass Management on Water Quality of Non-tidal Streams in the Chesapeake Bay WatershedWilson, Chantel 09 April 2015 (has links)
Turfgrass management activities on golf courses have been identified as a possible source of Chesapeake Bay nutrient pollution. Total Maximum Daily Load goals are in place to reduce nutrient amounts entering the Bay. Dissertation investigations include (1) the role of golf course turfgrass management in nutrient deposition or attenuation in local streams, (2) estimations of total nitrogen (N) discharging to the watershed from stream outlet points as a function of land use and watershed area, and (3) other factors potentially affecting water quality on golf courses, including soil characteristics and use of best management practices (BMPs). Total N, nitrate-N, ammonium-N, phosphate-phosphorus (P), streamwater temperature, specific conductance (SpC), pH and dissolved oxygen (DO) were sampled at 12-14 golf course stream sites in the James River and Roanoke River watersheds during baseflow conditions. Discharge was determined at outflow locations. Unit-area loads (UALs) were calculated from monitoring data. These UALs were then compared to UALs from Chesapeake Bay Watershed Model land use acreages and simulated loads for corresponding watershed segments. Virginia golf course superintendents were also surveyed to determine BMP use. No consistent impairment trends were detected for streamwater temperature, SpC, pH, or DO at any of the sites. Outflow NO3-N was below the 10 mg L-1 EPA drinking water standard. However, some sites may be at increased risk for benthic impairment with total N concentrations >2 mg L-1, as suggested by VADEQ. Significant increases in nitrate-N at OUT locations were measured at four sites, whereas decreases were measured at two sites. Ammonium-N significantly decreased at two sites. Golf course N UALs calculated from baseflow monitoring were lower than or similar to UALs estimated for forested areas in the associated watershed segment at seven out of the 12 sites. Golf course UALs ranged from 1.3-87 kg N ha-1 yr-1. Twenty-one of 32 surveyed BMPs had an adoption rate ≥50% among survey respondents. In most cases, presence of golf courses generally does not appear to significantly degrade baseflow water quality of streams in this study. Management level appears to be an influencing factor on water quality and concerns may be heightened in urban areas. / Ph. D.
|
322 |
Cyclic Uniaxial Constitutive Model For Steel ReinforcementKim, Se-Hyung 31 January 2015 (has links)
Reinforced Concrete (RC) structures are common in earthquake-prone areas. During an earthquake, the steel reinforcement is subjected to cyclic strain histories which lead to inelastic response. In the case of rare, strong earthquakes, inelastic buckling and even rupture due to low-cycle fatigue can also occur. The understanding and characterization of the performance of RC structures under earthquake hazards requires the accurate simulation of the inelastic hysteretic behavior of steel reinforcement by means of appropriate constitutive models.
Several uniaxial material models have been developed for reinforcing steel. Existing material models sacrifice efficiency for accuracy or vice versa. Conceptually simple and numerically efficient models do not accurately capture the hysteretic response and ignore rupture or buckling. On the other hand, more refined material models are characterized by iterative stress update procedures which can significantly increase the computational cost of an analysis. Additionally, experience suggests that refined models attempting for the effect of inelastic buckling tend to lead to numerical convergence problems in the stress update procedure.
The goal of the present study is the formulation and implementation of an accurate and computationally efficient constitutive model for steel reinforcement under cyclic loading. A previously developed model, capable of capturing the inelastic hysteretic response of reinforcing steel in the absence of buckling and rupture, is used as a starting point in this study. The model is enhanced by replacing its original, iterative stress update procedure with an equally accurate, non-iterative one. Additionally, the model is enhanced to capture the effects of inelastic buckling and of rupture. The accuracy of the model and the efficiency of the non-iterative stress update algorithm are demonstrated by means of validation analyses. / Master of Science
|
323 |
Numerical Analysis of RAP Elements under Dynamic LoadingSaade, Angela Charbel 24 January 2019 (has links)
The 2010-2011 Canterbury, New Zealand, Earthquake Sequence (CES) resulted in 185 fatalities and approximately $NZ40 billion in damage, much of which was due to liquefaction and related phenomena. As a result, an extensive soil improvement field testing program was initiated and Rammed Aggregate Piers� (RAP) were shown to be a feasible method to mitigate the risk from liquefaction during future events. To better design and more fully assess the efficacy of reinforcement techniques against liquefaction, pre- and post-treatment in-situ test data are compiled, to include results from cone penetration tests (CPT), direct-push crosshole tests, and vibroseis (T-Rex) shaking tests. The data are used to evaluate the capabilities of numerical tools to predict the liquefaction response of unimproved and improved sites. A finite difference (FD) numerical model is developed in a FLAC platform and a coupled analysis using the Finn model with Byrne (1991) formulation is conducted. The FD model calibrated for top-down shakings similar to the vibroseis tests succeeded in qualitatively reproducing the general observed behavior without quantitatively matching the in-situ values for shear strains and excess pore pressure ratios. The introduction of the RAP elements to the FD model reduced the shear strain, but slightly overestimated that reduction. Considering more advanced constitutive models that better simulate the complexity of the soil behavior under dynamic loading would likely increase the accuracy of the predicted response. / MS / During earthquakes, a significant loss of strength in soil can occur. This phenomenon, known as liquefaction, can have a devastating impact on the area affected. The 2010-2011 Canterbury, New Zealand, Earthquake Sequence (CES) resulted in 185 fatalities and approximately $NZ40 billion in damage, much of which was due to liquefaction and related phenomena. Consequently, the New Zealand Earthquake Commission implemented a field testing program in order to investigate the efficiency of ground improvement techniques in reducing soil liquefaction potential. One of the tested techniques was Rammed Aggregate Piers™ (RAP) and was shown to be a feasible method in mitigating the risk from liquefaction during future events. The focus of this study is to develop a numerical model capable of predicting the liquefaction response of unimproved and RAP-improved sites. Pre- and post-treatment test data are therefore compiled and used to calibrate the model. The numerical model calibrated for shakings similar to the on-site tests succeeded in qualitatively, but not quantitatively, reproducing the behavior observed in the field. The introduction of the RAP elements to the model revealed an improvement against liquefaction hazard; however, the improvement was overestimated compared to the field results. Considering more advanced numerical features that better simulate the complexity of the soil behavior under dynamic loading would likely increase the accuracy of the predicted response.
|
324 |
Characterization of soft tissue and surrogate materials across varied loading methodsDennis, Cole 26 July 2025 (has links)
Exploring the mechanical properties of soft tissues under compressive loading is crucial for understanding their role in automobile incidents. Soft tissues, which serve as cushions or padding between bone and vehicle interiors, significantly influence contact duration and forces, thereby altering incident kinematics and injury risk assessment.
In this investigation, muscle and soft connective tissues from post-mortem human subjects (PMHS) forearms were excised and subjected to compression and indentation testing methods at various rates and strains. Anthropomorphic Test Devices (ATDs) upper extremity foam and vinyl foam composite material surrogate tissues underwent similar testing for comparison. High impact rates simulating those in high-speed car collisions were achieved using a custom-built drop tower.
The results revealed substantial differences in stiffness between soft tissues and ATD materials across most loading rates and strains, although some exceptions were noted at higher rates and strains. Indentation and modified Zener models were used to quantify material parameters. The indentation model could characterize human muscle, soft connective tissues and ATD vinyl foam composites, but fell short with ATD foam materials. The Zener model effectively derived material parameters for the tested human tissues but encountered difficulties characterizing both ATD materials. This highlights the need for further refinement to develop a constitutive model for both materials.
These findings provide a solid basis for advancing ATD surrogate materials and have broader implications for soft tissue research. Moreover, this work represents a crucial step towards enhancing safety standards in the automotive industry. / Thesis / Master of Science in Biomedical Engineering / Soft tissues are crucial in mitigating impact effects in various loading scenarios, yet their specific roles are complex and poorly understood. Understanding soft tissues' role in these loading scenarios is critical for understanding injury risk tolerances.
This study aimed to characterize muscle and soft connective tissue behaviour during compressive loading scenarios using various techniques and modelling approaches. This was done through compressive loading tests on soft tissues and comparing these same tests with data from current crash test dummy surrogate tissues.
The results showed that the soft tissues were less stiff than the crash test dummy materials in most scenarios. It was also apparent that different stiffnesses were seen depending on soft connective tissue and muscle tissue composition.
This study provides insights into the rate dependence of materials, alongside the relevance of how different compositions affect their loading properties. This characterization also revealed significant discrepancies between the responses of current surrogates and human muscle and soft connective tissues.
This work offers valuable observations and data for refining ATD surrogates and enhancing their fidelity in simulating real-world impact scenarios. Such advancements are pivotal for improving safety standards.
|
325 |
The Effects of Bolt Spacing on the Performance of Single-Shear Timber Connections Under Reverse-Cyclic LoadingAlbright, Dustin Graham 15 August 2006 (has links)
Much previous experimentation related to wood structures has employed monotonic loading to replicate static situations. However, instances of natural hazards have raised interest in the response of structural connections to dynamic loads. This increased interest led the Consortium of Universities for Research in Earthquake Engineering (CUREE) to develop a testing protocol for reverse-cyclic loading, which involves cycling loads through zero in order to test specimens in both tension and compression. With the CUREE testing protocol in place, recent research has been devoted to understanding the effects of reverse-cyclic loading on multiple-fastener connections.
Experimentation by Heine (2001), Anderson (2002), Billings (2004) and others contributed to a better understanding of bolted connection behavior under reverse-cyclic loading. However, some questions remained. Billings was unable to consistently produce yield modes III and IV, meaning that her suggested bolt spacing of seven times the bolt diameter (7D) could not be applied to connections subject to these yield modes without further testing. In addition, the work of Anderson and Billings raised questions regarding the proper measurement of bending yield strength in bolts and the relationship between the bending yield strength and the tensile yield strength. These topics are each addressed by this project and thesis report.
Results of the connection testing presented in this report can be used in conjunction with the work of Anderson and Billings to critically evaluate the 4D between-bolt spacing recommended by the National Design Specification (NDS) for Wood Construction (AF&PA, 2001). Results of the bolt testing provide a supplement to the search for a reliable method for the measurement of bending yield strength in bolts. / Master of Science
|
326 |
Quantification of Cumulative Load on the Knee using a Vibration Emission MethodDorbala, Venkata Navaneeta 28 September 2012 (has links)
Background: Epidemiological studies suggest an increased incidence of osteoarthritis among workers in occupations requiring squat-lifting such as in construction, mining and farming. Squat-lifting postures can induce heavy mechanical loads on the joint, causing the articulating surfaces to deform. This can result in changes of vibration characteristics of the joint surfaces. Differences in the vibration characteristics of normal and pathological joints have been established and used in the past for classifying severity of disease. The purpose of this study was to examine the influence of cumulative mechanical load on the vibration properties of the knee joint and to gain an understanding of how these properties may relate to an increase in cumulative load placed on the joint.
Methods: In this study, cumulative load was measured as the resultant knee joint torque during squat lifting, while a piezoelectric accelerometer was used to capture vibration signals from points on the knee during flexion and extension. Twelve university students were recruited for a repeated measures study. Each participant attended one session where they had to perform a series of six squat-lifting tasks on a force platform. Motion capture equipment was used to obtain kinematic data. The cumulative 3-D moment on the joint was calculated using inverse dynamics.
Results: A visual inspection of an ensemble average constructed for the frequency spectrum of all participants revealed that differences may exist in the 750 Hz - 2000 Hz bandwidth for vibrations coming from the patella during flexion. Further statistical analysis by a t-test and ANOVA showed a decrease in the RMS power of the signal captured in this bandwidth before and after mechanical load was induced by squat lifting. A linear regression analysis indicated a significant correlation between cumulative 3-D moment on the knee joint and the median frequency of vibration signals from the patella during flexion in the 1000 Hz - 2500 Hz range.
Conclusions: Overall, the results of this study indicate the possibility of a relationship between mechanical exposure on the knee joint and its vibration properties during joint movement. Despite the small sample size, a declining trend was observed in the normalized RMS power of signals with increase in loading. However, the quantitative nature of this relationship is not clear and the current study points towards a non-linear relationship between joint exposure and knee vibrations. Future studies must investigate this possibility using direct measures of joint loading, cartilage deformation and their relation to joint vibrations. / Master of Science
|
327 |
Evaluation of Extended End-Plate Moment Connections Under Seismic LoadingRyan, John Christopher 21 October 1999 (has links)
An experimental investigation was conducted to study the extended end-plate moment connections subjected to cyclic loading. Seven specimens representing three end-plate moment connection configurations commonly used in the pre-engineered building industry were used. The connections were designed using yield-line theory to predict end-plate yielding and the modified Kennedy method to predict maximum bolt force calculations including prying action. A displacement controlled loading history was used to load the specimens. The maximum moments obtained experimentally and the experimental bolt forces throughout loading were compared with analytical predictions and finite element model results. The inelastic rotation of connections was calculated and conclusions were drawn on the compliance of these connections with current AISC specifications. / Master of Science
|
328 |
Consolidation of unsaturated seabed around an inserted pile foundation and its effects on the wave-induced momentary liquefactionSui, T., Zheng, J., Zhang, C., Jeng, D-S., Guo, Yakun, He, R. 07 October 2016 (has links)
Yes / Seabed consolidation state is one of important factors for evaluating the foundation stability of the marine structures. Most previous studies focused on the seabed consolidation around breakwaters standing on the seabed surface. In this study, a numerical model, based on Biot’s poro-elasticity theory, is developed to investigate the unsaturated seabed consolidation around a nearshore pile foundation, in which the pile inserted depth leads to a different stress distribution. Seabed instabilities of shear failure by the pile self-weight and the potential liquefaction under the dynamic wave loading are also examined. Results indicate that (1) the presence of the inserted pile foundation increases the effective stresses below the foundation, while increases and decreases the effective stresses around the pile foundation for small (de/R<=3.3) and large (de/R>3.3) inserted depths, respectively, after seabed consolidation, (2) the aforementioned effects are relatively more significant for small inserted depth, large external loading, and small Young’s modulus, (3) the shear failure mainly occurs around the inserted pile foundation, rather than below the foundation as previously found for the located marine structures, and (4) wave-induced momentary liquefaction near the inserted pile foundation significantly increases with the increase of inserted depth, due to the change of seabed consolidation state. / National Natural Science Foundation for Distinguished Young Scholars (51425901), the National Natural Science Foundation of China (51209082, 51209083), the Natural Science Foundation of Jiangsu Province (BK20161509), the Fundamental Research Funds for the Central Universities (2015B15514), Jiangsu Graduate Research and Innovation Plan Grant (#CXLX11_0450) and the 111 project (B12032).
|
329 |
Muscle Loading Treatments for Achilles TendinopathyEasley, Dylan Cole 07 February 2025 (has links)
Tendinopathies are common, painful, and debilitating injuries that can be challenging to treat. Current treatment methods are limited to surgery, nonsteroidal anti-inflammatory drugs, dry needling, and injectable therapeutics, platelet rich plasma and corticosteroids. Unfortunately, these existing treatments display poor long-term outcomes and have an increased risk of reinjury. Additionally, the healing mechanism for injured tendons forms scar tissue which is characterized by disrupted extracellular matrix rather than complete injury resolution. These structural changes impact the mechanical properties of tendon, reducing their capacity to transfer and store energy, making them inferior to uninjured tendons. The reduced mechanical properties increase the risk of rupture, exacerbating this debilitating disease and decreasing quality of life. Physical therapy (eccentric loading) decreases the symptoms of tendinopathy and restores Achilles tendon functionality. However, the mechanism by which these mechanical stimulations induce healing is poorly understood. There is a clinically relevant motivation to better understand the healing cascade in response to eccentric exercises. We aim to identify and characterize the effects of eccentric rehabilitative muscle loading on the Achilles tendon and gastrocnemius muscle complex using our preclinical TGF-ß1-induced murine model of Achilles tendinopathy. To accomplish our objective, we tested three muscle loading magnitudes (50%, 75%, and 100% body weight), over three treatment durations (1, 2, and 4 weeks) to determine their effects on tendon healing. Age-matched injured/untreated and naïve groups accompanied each loading magnitude and duration period. The functional biomechanical properties, morphological adaptations, transcriptomic response, and muscle strength of the Achilles tendon were assessed.
Injured/untreated tendons had a significantly increased cross-sectional area compared to naïve and all loading groups at 2 and 4 weeks. Maximum stress and elastic modulus of injured/untreated tendons were significantly lower compared to naïve and all loading groups after 4 weeks. Gastrocnemius muscle strength was maintained over time as loading magnitude increased. Force output was lower after 2 weeks at 100% body weight loading compared to the naïve group, then recovered to naïve levels after 4 weeks. Histological findings included increased cross-sectional area, matrix disorganization, and increased cellular density of injured/untreated tendons. The transcriptomic evaluation revealed several patterns of expression among exercised groups. Biological processes associated with exercised groups revealed genes responsible for inflammation, extracellular matrix organization, and cell to cell signaling. Overall, eccentric muscle loading improved tendon geometry and material properties compared to naïve levels and improved muscle strength over time. Morphological evaluation also showed improvements in cross-sectional area, and collagen orientation, and cell appearance after 2 and 4 weeks of eccentric loading. Similarly, the transcriptomic changes showed an effect from exercise and upregulation of genes essential for extracellular matrix organization, inflammatory regulation, and cell to cell signaling. / Doctor of Philosophy / Tendons are connective tissues that join muscle to bone to facilitate movement. Tendons are prone to injury because of their consistent use for daily activities. The Achilles tendon is particularly at risk for injury since it is responsible for walking, running, and jumping, making it susceptible to overuse. Current treatment methods such as surgery and pain relief medication can provide immediate symptomatic relief, but have limited long-term success. Physical therapy provides relief of symptoms of chronic Achilles tendinopathy and improves the tendon healing response. Eccentric-based exercises (lengthening of the muscle while it contracts) are known as 'heel drops' and have been the most successful physical therapy technique to improve Achilles tendon healing. However, the way these rehabilitative exercises facilitate healing is poorly understood. It is difficult to determine the exact methods of healing because the required frequency and amount of exercise varies between patients, and recovery times can take weeks or months. In this research, we aim to better characterize how different 'heel drop' routines improve tendon healing, providing a foundation for determining the intensity and duration of rehabilitative exercises that can be applied for better clinical outcomes.
To examine the effects of different eccentric-based loading profiles, we used a previously developed mouse model of chronic Achilles tendinopathy and customizable muscle stimulation device to simulate human physical therapy exercises at different intensity levels: full body weight (100%), assisted body weight (75%), and half body weight (50%). Prior to beginning treatments, we induced a tendon injury that mimics human injury and measured muscle strength before any exercise was performed. Mice were then introduced to muscle loading treatments that mimic clinical exercise routines: 3 sets of 10 heel drops, performed twice a week for 1-, 2- or 4-weeks. After the final day of exercise, muscle strength was measured again to see how the heel drop exercises impacted the muscle tissue. Tendons were collected and the mechanical properties, histologic changes, and transcriptomic adaptations were evaluated. Eccentric-based exercises improved the mechanical properties injured tendons and improved the architecture compared to injured/untreated controls. Injured tendons without treatment had inferior tendon mechanical properties and inferior structural changes. We also saw improved tissue changes and upregulation of genes responsible for tendon healing after exercise compared to naïve or injured/untreated mice. Our research demonstrates that performing consistent eccentric-based exercises for 2 or more weeks positively impacts tendon healing.
|
330 |
FILTER PERFORMANCE UNDER SIMULATED REAL-WORLD CONDITIONSWang, Qiang 01 January 2016 (has links)
Evaluating the performance of filter media for filtration applications is essential to assure design engineers and users that filter device will deliver promised performance for specific applications under the environmental stress. The study of particle loading characteristics of filter media in the laboratory setting is typically performed under the steady flow conditions, i.e., at the constant particle concentration and flow rate. In reality, filtration products are operated under the situations that the flow rate and mass concentration of particles are varied in time. The success of translating the laboratory data to estimate the performance of filter media in the fields is thus limited. It is necessary to investigate the performance of filter media under the real-world conditions, i.e., unsteady flow rate and mass concentration to bridge the gap.
The overall goals of this research are (1) to study the performance of filter medium under unsteady conditions (i.e., the performance of respirator filter media under simulated breathing conditions); and (2) to investigate the issue of non-uniform particle deposition on HVAC filter panels. A new experimental setup was developed to accomplish the former goal. Numerical modeling tool, Computational fluid dynamics (CFD), was applied to achieve the latter objective……
|
Page generated in 0.0164 seconds