Spelling suggestions: "subject:"La silhouette""
101 |
Imagerie ultrasonore dans les matériaux mousPerge, Christophe 03 July 2014 (has links) (PDF)
La matière molle se consacre à l'étude des propriétés de fluides complexes. Ces fluides diffèrent des fluides simples à cause de l'existence d'une microstructure qui provient de l'arrangement particulier des éléments mésoscopiques constitutifs du matériau (agrégats de particules de noir de carbone, enchevêtrements de polymères, micelles de molécules tensioactives). C'est le couplage entre microstructure et déformation qui confère aux fluides complexes des comportements singuliers et qui engendre des écoulements hétérogènes. Comprendre ces états hors-équilibre et les dynamiques associées présente un intérêt à la fois industriel et fondamental. La rhéologie en cellule de Taylor-Couette est une technique très répandue pour l'étude de la déformation et de l'écoulement de fluides complexes. Cependant, cette méthode n'est pas adaptée à l'étude des écoulements hétérogènes car elle ne fournit qu'une description globale de l'écoulement. Pour pallier ce problème, une technique de vélocimétrie ultrasonore à deux dimensions a été couplée à la rhéologie classique. Cette visualisation locale nous a permis d'étudier l'instabilité inertielle de Taylor-Couette dans les fluides newtoniens, les instabilités élastiques de fluides viscoélastiques (polymères et solutions micellaires), la fluidification de fluides à seuil (gels de noir de carbone, microgels de carbopol et émulsions) et enfin la rupture de gels de protéine soumis à une contrainte de cisaillement. Tous ces exemples montrent des coexistences entre différents états induits par l'écoulement et permettent de revisiter les approches rhéologiques à partir de caractérisations locales des champs de déformation et de vitesse.
|
102 |
Purely elastic shear flow instabilities : linear stability, coherent states and direct numerical simulationsSearle, Toby William January 2017 (has links)
Recently, a new kind of turbulence has been discovered in the flow of concentrated polymer melts and solutions. These flows, known as purely elastic flows, become unstable when the elastic forces are stronger than the viscous forces. This contrasts with Newtonian turbulence, a more familiar regime where the fluid inertia dominates. While there is little understanding of purely elastic turbulence, there is a well-established dynamical systems approach to the transition from laminar flow to Newtonian turbulence. In this project, I apply this approach to purely elastic flows. Laminar flows are characterised by ordered, locally-parallel streamlines of fluid, with only diffusive mixing perpendicular to the flow direction. In contrast, turbulent flows are in a state of continuous instability: tiny differences in the location of fluid elements upstream make a large difference to their later locations downstream. The emerging understanding of the transition from a laminar to turbulent flow is in terms of exact coherent structures (ECS) — patterns of the flow that occur near to the transition to turbulence. The problem I address in this thesis is how to predict when a purely elastic flow will become unstable and when it will transition to turbulence. I consider a variety of flows and examine the purely elastic instabilities that arise. This prepares the ground for the identification of a three-dimensional steady state solution to the equations, corresponding to an exact coherent structure. I have organised my research primarily around obtaining a purely elastic exact coherent structure, however, solving this problem requires a very accurate prediction of the exact solution to the equations of motion. In Chapter 2 I start from a Newtonian ECS (travelling wave solutions in two-dimensional flow) and attempt to connect it to the purely elastic regime. Although I found no such connection, the results corroborate other evidence on the effect of elasticity on travelling waves in Poiseuille flow. The Newtonian plane Couette ECS is sustained by the Kelvin-Helmholtz instability. I discover a purely elastic counterpart of this mechanism in Chapter 3, and explore the non-linear evolution of this instability in Chapter 4. In Chapter 5 I turn to a slightly different problem, a (previously unexplained) instability in a purely elastic oscillatory shear flow. My numerical analysis supports the experimental evidence for instability of this flow, and relates it to the instability described in Chapter 3. In Chapter 6 I discover a self-sustaining flow, and discuss how it may lead to a purely elastic 3D exact coherent structure.
|
103 |
Numerical Simulation of Convection Dominated Flows using High Resolution Spectral MethodVijay Kumar, V January 2013 (has links) (PDF)
A high resolution spectrally accurate three-dimensional flow solver is developed in order to simulate convection dominated fluid flows. The governing incompressible Navier Stokes equations along with the energy equation for temperature are discretized using a second-order accurate projection method which utilizes Adams Bashforth and Backward Differentiation formula for temporal discretization of the non-linear convective and linear viscous terms, respectively. Spatial discretization is performed using a Fourier/Chebyshev spectral method. Extensive tests on three-dimensional Taylor Couette flow are performed and it is shown that the method successfully captures the different states ranging from formation of Taylor vortices to wavy vortex regime. Next, the code is validated for convection dominated flows through a comprehensive comparison of the results for two dimensional Rayleigh Benard convection with the theoretical and experimental results from the literature. Finally, fully parallel simulations, with efficient utilization of computational resources and memory, are performed on a model three-dimensional axially homogeneous Rayleigh Benard convection problem in order to explore the high Rayleigh number flows and to test the scaling of global properties.
|
104 |
Quelques aspects de la physique des interfaces cisaillées : hydrodynamique et fluctuations / Some aspects of the physics of interface under shear : hydrodynamics and fluctuationsThiébaud, Marine 23 September 2011 (has links)
Ce travail porte sur l'étude théorique des interfaces entre deux fluides visqueux, soumis à un écoulement de Couette plan. Dans cette situation hors d'équilibre, les fluctuations thermiques de l'interface sont modifiées en raison du couplage par le cisaillement entre les effets visqueux et les effets de tension. Comme c'est le cas pour d'autres systèmes de matière molle (par exemple, les phases lamellaires), le cisaillement peut alors amplifier ou amortir les déformations interfaciales. On s'intéresse tout d'abord à la dynamique des fluctuations interfaciales. On montre que ces dernières vérifient une équation stochastique non-linéaire, dont la solution est contrôlée par un paramètre sans dimension qui contient toute l'information sur le système. La résolution à faible taux de cisaillement révèle que le déplacement quadratique moyen des fluctuations thermiques diminue avec l'écoulement, conformément aux observations expérimentales et numériques. Ensuite, on étudie l'influence des effets inertiels sur la stabilité de l'écoulement, dans le régime des fortes viscosités et des faibles tensions. Ce régime des grands nombres capillaires n'a été que très peu étudié, mais trouve sa pertinence par exemple dans les mélanges biphasiques de colloïdes et de polymères. Des critères de stabilité simples sont mis en évidence. Finalement, on réalise une étude numérique des propriétés des fluctuations interfaciales à grand cisaillement. Bien que les effets visqueux soient dominants, il en ressort une phénoménologie similaire à certains modèles de turbulence. / In this contribution, we investigate theoretically an interface between two newtonian fluids in a stationnary shear flow. The statistical properties of the interface are driven out of equilibrium due to the coupling by the shear flow between viscous and tension effects. The shear flow may either enhance or suppress interfacial deformations, as it is the case in others soft matter systems (for example, lamellar phases). The dynamics of thermal fluctuations is first considered. It is shown that fluctuation modes follow a stochastic nonlinear equation. The solution is then controlled by a single dimensionless parameter, that contains all the information of the system. The mean square displacement is obtained in the limit of small shear rates: it is found to be smoothed out by the flow, in qualitative agreement with experiments and simulations. Then, a stability analysis of the flow is achieved when inertial contibutions are taken into account. We focus on the regime of small surface tension and large viscosity. This regime has experienced a renewed interest in the last few years, in the context of phase-separated colloid-polymer mixtures. Simple criteria for the stability or instability of the flow are outveiled. Finally, a numerical study of fluctuation properties is performed in the limit of large shear rate. Although viscous effects are predominant, the results share some similarities with some turbulence models.
|
105 |
Shear Induced Migration of Particles in a Yield Stress FluidGholami, Mohammad January 2017 (has links)
No description available.
|
106 |
The Hydrodynamic Interaction of Two Small Freely-moving Particles in a Couette Flow of a Yield Stress FluidFirouznia, Mohammadhossein January 2017 (has links)
No description available.
|
107 |
Macroscopic description of rarefied gas flows in the transition regimeTaheri Bonab, Peyman 01 September 2010 (has links)
The fast-paced growth in microelectromechanical systems (MEMS), microfluidic fabrication, porous media applications, biomedical assemblies, space propulsion, and vacuum technology demands accurate and practical transport equations for rarefied gas flows. It is well-known that in rarefied situations, due to strong deviations from the continuum regime, traditional fluid models such as Navier-Stokes-Fourier (NSF) fail. The shortcoming of continuum models is rooted in nonequilibrium behavior of gas particles in miniaturized and/or low-pressure devices, where the Knudsen number (Kn) is sufficiently large.
Since kinetic solutions are computationally very expensive, there has been a great desire to develop macroscopic transport equations for dilute gas flows, and as a result, several sets of extended equations are proposed for gas flow in nonequilibrium states. However, applications of many of these extended equations are limited due to their instabilities and/or the absence of suitable boundary conditions.
In this work, we concentrate on regularized 13-moment (R13) equations, which are a set of macroscopic transport equations for flows in the transition regime, i.e., Kn≤1. The R13 system provides a stable set of equations in Super-Burnett order, with a great potential to be a powerful CFD tool for rarefied flow simulations at moderate Knudsen numbers.
The goal of this research is to implement the R13 equations for problems of practical interest in arbitrary geometries. This is done by transformation of the R13 equations and boundary conditions into general curvilinear coordinate systems. Next steps include adaptation of the transformed equations in order to solve some of the popular test cases, i.e., shear-driven, force-driven, and temperature-driven flows in both planar and curved flow passages. It is shown that inexpensive analytical solutions of the R13 equations for the considered problems are comparable to expensive numerical solutions of the Boltzmann equation. The new results present a wide range of linear and nonlinear rarefaction effects which alter the classical flow patterns both in the bulk and near boundary regions. Among these, multiple Knudsen boundary layers (mechanocaloric heat flows) and their influence on mass and energy transfer must be highlighted. Furthermore, the phenomenon of temperature dip and Knudsen paradox in Poiseuille flow; Onsager's reciprocity relation, two-way flow pattern, and thermomolecular pressure difference in simultaneous Poiseuille and transpiration flows are described theoretically. Through comparisons it is shown that for Knudsen numbers up to 0.5 the compact R13 solutions exhibit a good agreement with expensive solutions of the Boltzmann equation.
|
Page generated in 0.0465 seconds