• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 247
  • 163
  • 46
  • 41
  • 33
  • 27
  • 21
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • Tagged with
  • 745
  • 120
  • 93
  • 88
  • 86
  • 79
  • 76
  • 67
  • 64
  • 64
  • 63
  • 61
  • 61
  • 58
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Livscykelanalys av påläggssvetsning på räls / Lifecycle analysis of laser cladding on rail

Eldensjö, Eric, Westling, Karl, Egeman, Otto January 2020 (has links)
Detta arbete undersöker huruvida reparation genom påläggsvetsning kan användas på tågrälsar i Stockholms tunnelbana istället för tillverkning av nya. Olika metallpulver och slitageprofiler analyseras genom en livscykelanalys ur vilken energiförbrukning och CO2-utsläpp jämförs med konventionell tillverkning av tågrälsar. Utifrån olika rekommendationer gällande maximalt sido- och höjdslitage av en rälprofil, skapades en CAD-modell i Solid Edge ur vilken volymen av beläggningen togs fram. Beräkningen av livscykel gjordes sedan med hjälp av programmet CES EduPack och dess inbyggda verktyg Eco Audit tool. Resultatet som togs fram var att laserpåsvetsning minskar både CO2-utsläppen och energiåtgången markant under både transport, tillverkning och materialframtagning för alla material och slitagefall som testades. Som mest sänktes CO2-utsläppen med 95 % och som minst med 85 %. Energiåtgången minskade som mest med 95 % och som minst med 67 %. Materialet som ansågs vara mest lämplig för påläggssvetsning var Rockit 401, då denna bidrog till största minskningen av energiåtgång och koldioxidutsläpp samt hade bäst egenskaper gällande sprickbildning samt hårdhet. / This report investigates the method of laser cladding and its possibility to repair worn down subway tracks as an alternative to manufacturing new ones. Different types of metal powders and wear profiles were studied through a life cycle analysis from which the energy consumption and carbon dioxide emissions were compared to the conventional method of manufacturing rails. Based on data and recommendations for maximum wear a CAD-model in Solid Edge was constructed, from which the volume of the coating was calculated. The life cycle analysis were calculated using the program CES EduPack and its built-in application Eco Audit tool. The result is that laser cladding will lower both the carbon dioxide emission and the energy consumption significantly during both transport, manufacturing and production for every material and wear profiles that were tested. The biggest reduction for carbon dioxide emissions was 95 % and the lowest was 85 %. The biggest reduction of energy consumption was 95 % and the lowest was 67 %. The material that was considered the most suitable for our purpose was Rockit 401 since it contributed to the biggest reduction of both energy consumption and carbon dioxide emission. Rockit 401 also showed good properties regarding cracking and hardness.
352

Evaluating At-Grade Rail Crossing Safety along the Knowledge Corridor in Massachusetts

Horan, Timothy P 01 January 2013 (has links) (PDF)
Highway-rail grade crossings are safer than ever, but collisions between motor vehicles and trains persist. Some collisions could be prevented by actively maintaining such grade crossings, yet many at-grade rail crossings are only evaluated following collisions. Those crossings that experience no collisions may go decades without being inspected. In recent years, the Congress has allocated funds for a national High-Speed Intercity Passenger Rail program, and it is in the public’s interest for state road/highway agencies to inspect all highway-rail crossings in high-speed rail corridors to ensure that the warning systems in place are commensurate with the crossings’ needs. The objectives of this research are to a) determine the adequacy of traffic control devices at highway-rail grade crossings along the restored Vermonter tracks in Massachusetts; and b) to recommend crossings for closure and/or grade separation if it is determined that the traffic control devices are inadequate at an intersection. The major findings of this paper are that a majority of the at-grade rail crossings need some improvements to be in compliance with MUTCD standards. Additionally, four at-grade crossings are identified for closure, grade-separation, and/or additional traffic control devices beyond MUTCD standards.
353

Rail transits effect on population growth. : A comparison between different rail transit types

Tiväng, Mikael January 2023 (has links)
The study examines the relationship between accessibility to public rail transit stations and population growth. Accessibility is measured in time, as in how long it takes to walk to a rail station. The study uses service areas created in a GIS based on how far a person can walk in 10 minutes, comparing the average population growth within these service areas to the average population growth outside of them. Different types of rail transit modes are compared to each other to see if they have differing effects on population growth as well as if multimodal stations affect population growth differently. The results show that accessibility to public rail transit has a positive effect on population growth and that different types of rail transit affect population growth differently. Multimodal stops also have a positive effect on population growth with more transit options resulting in a higher population growth.
354

Analysis of Electromagnetic Launcher Design and Modeling

Germany, Garrett Ross 01 June 2016 (has links) (PDF)
This thesis derives working expressions from electromagnetic physical laws to gain a deeper understanding of the nature of railguns. The expressions are refined for ease of use and then compared to electromagnetic simulators that solve complex equations that arise from different rail geometry. Further simplifications lead to an expression for the final velocity of the projectile and showcase the importance of the system resistance to projectile flux gain ratio. A Simulink simulation then incorporates the resulting non-linear differential equations and approximates the projectile velocity over time based on physical dimensions and material properties. Some equations derived can be found in literature regarding the subject but often lack explanation. This work is intended to provide a thorough derivation of all the relative constituent relations between the critical characteristics of the gun such as the strength of the forces acting on the rail and projectile, rail current, and initial velocity of the projectile. This makes it easier to identify what influences acceleration of the projectile, how much bracing each rail needs, how much initial velocity to give the projectile, etc. Design options discussed besides the standard design include the augmented rail system, a magnetic shell design, and a “wrap around” design. The tradeoffs encountered in each design are discussed in length. Due to the lack of a sufficient power source during testing the projectile was unable to travel down the length of the rails due to metal binding, insufficient pulse duration, and too much circuit resistance. It was found that using copper tungsten for the rails ensures that the rails can withstand the arcing inflicted by the kilo-Ampere current along the rails very well compared to other materials. Also, the copper in the tungsten alloy ensures high conductivity while the tungsten provides structural integrity to the rails during arcing between them and the projectile. Frequency response of conductive projectiles is characterized and improvements such as laminated projectiles are suggested as solutions to mitigate eddy currents induced in the projectile and improve performance.
355

Development of a High-Speed Rail Model to Study Current and Future High-Speed Rail Corridors in the United States

Vandyke, Alex J. 20 July 2011 (has links)
A model that can be used to analyze both current and future high-speed rail corridors is presented in this work. This model has been integrated into the Transportation Systems Analysis Model (TSAM). The TSAM is a model used to predict travel demand between any two locations in the United States, at the county level. The purpose of this work is to develop tools that will create the necessary input data for TSAM, and to update the model to incorporate passenger rail as a viable mode of transportation. This work develops a train dynamics model that can be used to calculate the travel time and energy consumption of multiple high-speed train types while traveling between stations. The work also explores multiple options to determine the best method of improving the calibration and implementation of the model in TSAM. For the mode choice model, a standard C logit model is used to calibrate the mode choice model. The utility equation for the logit model uses the decision variables of travel time and travel cost for each mode. A modified utility equation is explored; the travel time is broken into an in-vehicle and out-of-vehicle time in an attempt to improve the model, however the test determines that there is no benefit to the modification. In addition to the C-logit model, a Box-Cox transformation is applied to both variables in the utility equation. This transformation removes some of the linear assumptions of the logit model and thus improves the performance of the model. The calibration results are implemented in TSAM, where both existing and projected high-speed train corridors are modeled. The projected corridors use the planned alignment for modeling. The TSAM model is executed for the cases of existing train network and projected corridors. The model results show the sensitivity of travel demand by modeling the future corridors with varying travel speeds and travel costs. The TSAM model shows the mode shift that occurs because of the introduction of high-speed rail. / Master of Science
356

Forecasting Model for High-Speed Rail in the United States

Ramesh Chirania, Saloni 08 November 2012 (has links)
A tool to model both current rail and future high-speed rail (HSR) corridors has been presented in this work. The model is designed as an addition to the existing TSAM (Transportation System Analysis Model) capabilities of modeling commercial airline and automobile demand. TSAM is a nationwide county to county multimodal demand forecasting tool based on the classical four step process. A variation of the Box-Cox logit model is proposed to best capture the characteristic behavior of rail demand in US. The utility equation uses travel time and travel cost as the decision variables for each model. Additionally, a mode specific geographic constant is applied to the rail mode to model the North-East Corridor (NEC). NEC is of peculiar interest in modeling, as it accounts for most of the rail ridership. The coefficients are computed using Genetic Algorithms. A one county to one station assignment is employed for the station choice model. Modifications are made to the station choice model to replicate choices affected by the ease of access via driving and mass transit. The functions for time and cost inputs for the rail system were developed from the AMTRAK website. These changes and calibration coefficients are incorporated in TSAM. The TSAM model is executed for the present and future years and the predictions are discussed. Sensitivity analysis for cost and speed of the predicted HSR is shown. The model shows the market shift for different modes with the introduction of HSR. Limited data presents the most critical hindrance in improving the model further. The current validation process incorporates essential assumptions and approximations for transfer rates, short trip percentages, and access and egress distances. The challenges for the model posed by limited data are discussed in the model. / Master of Science
357

Towards Autonomous Health Monitoring of Rails Using a FEA-ANN Based Approach

Brown, L., Afazov, S., Scrimieri, Daniele 21 March 2022 (has links)
Yes / The current UK rail network is managed by Network Rail, which requires an investment of £5.2bn per year to cover operational costs [1]. These expenses include the maintenance and repairs of the railway rails. This paper aims to create a proof of concept for an autonomous health monitoring system of the rails using an integrated finite element analysis (FEA) and artificial neural network (ANN) approach. The FEA is used to model worn profiles of a standard rail and predict the stress field considering the material of the rail and the loading condition representing a train travelling on a straight line. The generated FEA data is used to train an ANN model which is utilised to predict the stress field of a worn rail using optically scanned data. The results showed that the stress levels in a rail predicted with the ANN model are in an agreement with the FEA predictions for a worn rail profile. These initial results indicate that the ANN can be used for the rapid prediction of stresses in worn rails and the FEA-ANN based approach has the potential to be applied to autonomous health monitoring of rails using fast scanners and validated ANN models. However, further development of this technology would be required before it could be used in the railway industry, including: real time data processing of scanned rails; improved scanning rates to enhance the inspection efficiency; development of fast computational methods for the ANN model; and training the ANN model with a large set of representative data representing application specific scenarios.
358

On the Influence of Rail Vehicle Parameters on the Derailment Process and its Consequences

Brabie, Dan January 2005 (has links)
This thesis aims at systematically studying the possibilities of minimising devastatingconsequences of high-speed derailments by appropriate measures and features in thetrain design, including the running gear. The course of events immediately afterderailments is studied with respect to whether the train stays upright and close to thetrack centre line or deviates laterally with probably serious consequences. There is abelief in the railway community that some trains can better cope with derailment thenothers, although this superiority is apparently hard to quantify.Firstly, an empirical database has been established containing as much relevantinformation as possible of past incidents and accidents occurred at higher speeds due tomechanical failure close to the interface between the running gear and the track, as wellas other causes that ultimately brought the train into a derailed condition. Although nevertwo derailments are the same, certain patterns appeared to crystallise after analysing thecourse of events immediately after the failure based on the descriptions available in eachincident or accident report. Ultimately, this led to that several critical vehicle parameterscould be distinguished as capable to influence the outcome of a derailment.Secondly, two of the critical vehicle features found in the first stage have been subject todetailed analysis by means of multi-body system (MBS) simulations. The first phase ofthe computer simulation program focused on studying the tendency of a wheelset toderail as a result of an axle journal failure on the outside of the wheel. The prederailmentcomputer simulation model has been validated with good results for twoauthentic Swedish events of axle journal failure.Thereafter, one of the newly found critical vehicle feature, the wheelset mechanicalrestrictions relative to the bogie frame, have been extensively studied on an X 2000power unit and trailer car model. The results show that a vertical mechanical restrictionof the wheelset relative to the bogie frame of approximately 50 to 60 mm is capable ofkeeping the wheelsets on the rails after an axle journal failure, for the studied conditions.An axle mounted brake disc constitutes the second critical vehicle feature that has thepotential to favourably influence the sequence of events in cases of wheel flangeclimbing. A minimal range of geometrical parameters for which the rail would safely fillthe gap between the brake disc and the wheel has been calculated.The third and last part of the thesis establishes the prerequisites necessary in order tostudy the remaining of the critical vehicle parameters found in the first part, whichrequires complete MBS simulations of derailed vehicles rolling on track structures, i.e.concrete sleepers. To accomplish this task, hysteresis data for the force as function ofconcrete material indentation, are aimed to be acquired by means of finite element (FE)simulations. Therefore, the intended FE model of wheel-concrete sleeper impact issubjected to a tentative validation procedure. A good agreement is observed whencomparing the FE model results with an authentic accident in terms of concrete sleeperindentation. Furthermore, preliminary results in terms of a wheelset tendency to reboundafter concrete sleeper impact are presented. / QC 20101125
359

Развитие высокоскоростных железнодорожных магистралей в Китае и его влияние на туризм : магистерская диссертация / Development of high-speed railways in China and its impact on tourism

Сунь, Ц., Sun, Q. January 2017 (has links)
В выпускной квалификационной работе магистранта рассматриваются основные направления развития высокоскоростного железнодорожного сообщения в Китае. Студент уделяет внимание общей характеристике железнодорожной инфраструктуры КНР, прослеживает историю строительства сети скоростных жд, анализирует текущее положение дел в индустрии. / In the student master thesis, the main directions of the development of high-speed rail communication in China are considered. The student pays attention to the general characteristics of the railway infrastructure of China, traces the history of the construction of high-speed rail network, analyzes the current state of affairs in the industry.
360

Design, Analysis and Implementation of a Drive System for Delsbo Electric Light Rail Vehicle

Marklund, Daniel, Lindh, Maria January 2022 (has links)
The aim of this project is to design and implement a drive system and a driving strategy for a lightweight, battery-driven rail vehicle partaking in the Delsbo Electric student competition. The goal of the competition is to create a vehicle which consumes as little energy as possible.  A simulation model of the vehicle is developed in Simulink, based on existing hybrid car models. Different drive cycles are written in MATLAB and tested in the vehicle simulation, which calculates energy consumption, power and torque usage and other important data. This data is used to select an optimal driving strategy and dimension the drive system components.  The final drive system design consists of a permanent-magnet synchronous motor powered by lead acid batteries and controlled by a microcontroller and motor driver through a user interface consisting of a control board with buttons and switches.  The chosen driving strategy combines slow acceleration and constant speed in slopes with the pulse and glide strategy on flat parts of the track. The simulation shows a total energy consumption of 0.67 Wh/person and km, which is in the same order of magnitude as results from previous years, which is promising for the competition. However, the actual energy consumption can not be known until the vehicle has been built and tested. There is a lot of uncertainty around its parameters at this stage, which affects the reliability of the simulations. / Syftet med det här projektet är att designa och implementera ett drivsystem och en körstrategi för ett lättviktigt, batteridrivet rälsfordon. Fordonet ska användas i studenttävlingen Delsbo Electric. Målet med tävlingen är att bygga ett fordon som förbrukar så lite energi som möjligt.  För att göra detta utvecklas en simuleringsmodell av fordonet i Simulink, baserat på redan existerande modeller av hybridbilar. Olika körprogram skrivs i MATLAB och testkörs i modellen, som beräknar energiåtgång, använd effekt och vridmoment och annan viktig data. Dessa värden används sedan för att optimera körstrategin och dimensionera drivsystemets komponenter.  Det färdigdesignade drivsystemet består av en permanentmagnetiserad synkronmotor som matas från blyackumulatorer och styrs av en mikrokontroller och en driver via en kontrollpanel med knappar och switchar. Den valda körstrategin kombinerar låg acceleration och konstant hastighet i backarna med pulse-and-glide-strategin på de platta delarna av banan. Enligt simuleringarna ger den en total energiåtgång på 0.67 Wh/person-km, vilket är i samma storleksordning som tävlingsresultat från tidigare år. Detta bådar gott inför tävlingen, men det går inte att veta hur stor den faktiska energiförbrukningen kommer bli förrän fordonet är byggt och testat. Än så länge är många av dess parametrar osäkra, vilket påverkar tillförlitligheten hos simuleringarna. / Kandidatexjobb i elektroteknik 2022, KTH, Stockholm

Page generated in 0.1269 seconds