• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 19
  • 11
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 95
  • 95
  • 52
  • 32
  • 24
  • 20
  • 17
  • 17
  • 14
  • 13
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Die nicht-cholinerge Funktion der Azetylcholinesterase in dopaminergen Gebieten des ZNS in gesunden, pathologischen und sich entwickelnden Systemen The non-cholinergic function of acetylcholinesterase in the dopaminergic areas of the CNS in healthy, pathological and developing systems /

Heiland, Bettina. January 2002 (has links)
Darmstadt, Techn. Univ., Diss., 2002. / Dateien im PDF-Format
12

Neuromelanin‐Sensitive Magnetic Resonance Imaging Using DANTE Pulse / DANTEパルスを用いた神経メラニンMRIに関する検討

Oshima, Sonoko 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23070号 / 医博第4697号 / 新制||医||1049(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 花川 隆, 教授 溝脇 尚志, 教授 高橋 淳 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
13

Examination of melatonin receptor expression in the 6-hydroxydopamine rat model of Parkinson’s disease

Kang, Na Hyea (Rachel) 11 1900 (has links)
Melatonin has a neuroprotective function, which is mediated via its G-protein-coupled MT1 and MT2 receptors. When activated, various downstream pathways are triggered promoting cell protection and survival. By utilizing this function of melatonin, studies have shown positive effects in animal models of neurodegenerative disorders such as Parkinson’s disease (PD). In our previous studies, a physiological dose of melatonin was shown to have neuroprotective effects in the nigrostriatal pathway, as indicated by preservation of tyrosine hydroxylase (TH) immunoreactivity in a 6-hydroxydopamine (6-OHDA) model of PD. We also have reported that transplantation of MT1 receptor-expressing mouse neural stem cells (C17.2) along with melatonin treatment, preserved TH immunoreactivity in a similar PD model. Moreover, others have reported an increase in striatal melatonin levels in 6-OHDA-induced hemiparkinsonian rats. Based on these implications of a close relationship between the dopaminergic and melatonergic systems, we hypothesize that degeneration of dopaminergic neurons induced by 6-OHDA will affect the melatonergic system in the nigrostriatal pathway. In this study, 6-hydroxydopamine was unilaterally injected in the rat striatum or medial forebrain bundle. An apomorphine rotation test showed significant increases in net contralateral rotations (p<0.01) in lesioned animals as compared to sham. Also, a loss of TH immunoreactivity in the striatum and substantia nigra was seen in striatum lesioned groups, confirming lesion-induced degeneration of dopaminergic neurons in the nigrostriatal pathway. There were no significant differences in MT1 receptor protein expression in the striatum and substantia nigra, between all intrastriatal lesioned groups and the sham group. However, 6-OHDA lesions in the medial forebrain bundle caused a significant increase in MT1 receptor mRNA expression on the lesioned side (right) of the ventral midbrain as compared with the contralateral side. These results suggest that MT1 receptors are upregulated in the ventral midbrain following lesion-induced dopaminergic neurodegeneration, and may be involved in an endogenous neuroprotective mechanism. / Thesis / Master of Science (MSc)
14

Neuroprotective and neurorestorative effects of neuregulins in the injured and aged dopaminergic nigrostriatal system

Dickerson, Jonathan W. January 2010 (has links)
No description available.
15

Neuroinflammation, neuron loss, and their contribution to clinical symptoms in chronic traumatic encephalopathy

Kirsch, Daniel 27 April 2024 (has links)
Over 15 million contact sports players and military veterans are at risk for the development of chronic traumatic encephalopathy (CTE), a neurodegenerative disease associated with exposure to repetitive head impacts (RHI) that sometimes presents with parkinsonian motor symptoms, although very little is understood about how these individuals develop parkinsonism. CTE is characterized by accumulation of hyperphosphorylated tau protein (p-tau), and diagnosis requires the presence of neuronal tau in the form of neurofibrillary tangles at the depth of cortical sulci. We performed quantitative immunoassays for markers of neurovascular inflammation within the postmortem dorsolateral frontal cortex of participants with and without a history of RHI and CTE (n = 156), and tested for associations with RHI, microgliosis, and tau pathology measures. Levels of vascular injury-associated markers were increased in CTE compared to RHI-exposed and -naïve controls. Markers increased with RHI exposure duration and were associated with increased microglial density and tau pathology. Histologically, there was significantly increased ICAM1 staining of the microvasculature, extracellular space, and astrocytes at the sulcal depths in high stage CTE compared to both low stage CTE and controls. Multifocal perivascular immunoreactivity for serum albumin was present in all RHI-exposed individuals. These findings demonstrate that vascular injury markers are associated with RHI exposure, duration, and microgliosis, are elevated in CTE, and increase with disease severity. We next performed a cross-sectional analysis of all brain donors with CTE and without comorbid neurodegenerative disease (n=495) in the UNITE Brain Bank. Participants with parkinsonism (CTE-p, n=119) had a higher mean age at death (71.5 years (y)) than participants without parkinsonism (CTE-np, n=362, 54.1 y) and exhibited a higher rate of dementia than CTE-np participants. CTE-p participants had a more severe CTE stage and nigral pathology (NFTs, neuronal loss, and more frequent Lewy bodies), though the majority of cases were negative for nigral Lewy bodies. In American football players, simultaneous regression analysis demonstrated that nigral NFTs and neuronal loss mediate a connection between years of play and parkinsonism in CTE. In this cross-sectional study of contact sports athletes with CTE, years of contact sports participation was associated with SN proteinopathy and neuronal loss, and these pathologies were associated with parkinsonism. Finally, in a postmortem cohort (n=392) of brain donors with CTE without comorbid neurodegenerative disease, we used linear regression modelling to analyze the associations between isodendritic core nuclei pathology (semiquantitative neurofibrillary tangles (NFTs), neurites, and neuronal loss scores) and CTE disease severity, RHI exposure duration (years of contact sport play), and informant-reported cognitive and daily function as assessed by the Cognitive Difficulties Scale (CDS) and Functional Activities Questionnaire (FAQ), respectively. Overall, isodendritic core (IC) NFT scores increase with disease stage, Initially in the locus coeruleus and finally in the median raphe nuclei. Neuronal loss occurred at later disease stages than NFT accumulation. RHI exposure was associated with p-tau pathology for all IC regions. NFTs and neuronal loss in the substantial nigra were associated with increased CDS scores (i.e., worse cognitive function), and neuronal loss in the substantia nigra and locus coeruleus were associated with increased FAQ scores (i.e., worse daily function). We are able to show CTE is similar in distribution of p-tau pathology to progressive supranuclear palsy (PSP), a disease that is thought to primarily affect subcortical regions, especially by end stage disease. These results demonstrate the vulnerability of the isodendritic core nuclei to p-tau pathology and neuronal loss in CTE, and suggest that their involvement contributes to cognitive and functional symptoms during life. This work highlights the possible linkage between neuroinflammation leading to nigral p-tau accumulation and neuron loss which likely underlies the development and progression of parkinsonian motor symptoms in CTE.
16

Pup suckling is more rewarding than cocaine: evidence from functional magnetic resonance imaging and three-dimensional computational analysis

Harder, Josie A., Febo, M.M., Ferris, C.F., Sullivan, J.M. Jr 16 December 2009 (has links)
No / Nursing has reciprocal benefits for both mother and infant, helping to promote maternal behavior and bonding. To test the "rewarding" nature of nursing, functional magnetic resonance imaging was used to map brain activity in lactating dams exposed to their suckling pups versus cocaine. Suckling stimulation in lactating dams and cocaine exposure in virgin females activated the dopamine reward system. In contrast, lactating dams exposed to cocaine instead of pups showed a suppression of brain activity in the reward system. These data support the notion that pup stimulation is more reinforcing than cocaine, underscoring the importance of pup seeking over other rewarding stimuli during lactation
17

Study of the neuronal projection from the ventral tegmental area and substantia nigra to the periaqueductal gray region /

Li, Sa, January 2003 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2003. / Restricted until October 2004. Bibliography: leaves 90-116.
18

Glutamate-induced reversal of dopamine transport is mediated by the PKC signalling pathway

Opazo Dávila, Luis Felipe 30 April 2008 (has links)
No description available.
19

Abordagem para análise proteômica de neurônios contendo neuromelanina na substância negra, isolados por microdissecção a laser / An approach to proteomics analysis of neurons containing neuromelanin in the substantia nigra, isolated by laser microdissection

Molina, Mariana 11 November 2015 (has links)
Atualmente observa-se que a proporção de pessoas com 60 anos ou mais está crescendo mais rápido do que a de outras faixas etárias. Um dos resultados desta transição epidemiológica é o aumento das doenças cujo fator de risco é o envelhecimento, entre elas, a doença de Parkinson. Embora muitas regiões exibam os sinais neuropatológicos da doença de Parkinson, a degeneração dos neurônios, contendo neuromelanina, da substância negra é considerada como sendo uma característica importante, representando o critério cardinal para o diagnóstico. No entanto, ainda não está claro por que certas regiões do cérebro, como a substância negra, são vulneráveis em algumas doenças neurodegenerativas e alguns neurônios vizinhos, às vezes morfologicamente indistinguíveis, permanecem preservados. Análises moleculares de populações de neurônios podem conduzir a uma melhor compreensão sobre a fisiologia dos mesmos, bem como os mecanismos envolvidos nos processos de doença. Na era pós genômica, realizar análises proteômicas são de grande interesse científico, pois permitem avanços no conhecimento dos processos biológicos. A técnica de microdissecção e captura a laser tem sido uma ferramenta importante e cada vez mais utilizada para aquisição de populações puras de células a partir de secções histológicas, evitando que áreas não pertencentes ao tecido alvo sejam dissecadas. A união destes métodos pode contribuir de maneira relevante para o entendimento fisiopatológico dos neurônios contendo neuromelanina da substância negra. No entanto, para que a microdissecção e captura a laser e as análises proteômicas sejam eficazes, é imprescindível a aplicação de um protocolo bem estruturado. Dentro desse contexto, o presente trabalho tem como objetivo criar um protocolo de microdissecção a laser de neurônios contendo neuromelanina em indivíduos cognitivamente normais, para subsequente análise proteômica. Os casos utilizados neste estudo são provenientes do Banco de Encéfalos Humanos do Grupo de Estudos em Envelhecimento Cerebral. Para o desenvolvimento da nossa proposta, contamos com a colaboração do Centro de Proteômica Médica da Universidade de Bochum, Alemanha. O protocolo foi desenvolvido baseado em outros previamente descritos na literatura e otimizado de acordo com objetivos pretendidos. Analisamos o plano anatômico de amostragem do tecido, o método de congelamento, a espessura do corte para a microdissecção, a solução utilizada para a coleta do tecido durante a microdissecção e o método de digestão proteolítica para posteriores análises proteômicas. Através de ensaios comparativos, alcançamos os resultados desejados e os mesmos foram validados através de análises por espectrometria de massas. Consequentemente, também fomos capazes de reconhecer fatores técnicos que possivelmente impossibilitariam um efetivo estudo do proteoma / Currently the worldwide proportion of people aged 60 years and over is growing faster than any other age group. This strikingly epidemiological transition results in an increase of aging related diseases, including Parkinson\'s disease (PD). Although many brain areas exhibit the neuropathological signs of Parkinson\'s disease, the degeneration of neuromelanin containing cells in the substantia nigra is considered a hallmark feature, representing cardinal diagnostic criteria for PD. However, why certain brain regions -- such as the substantia nigra -- are vulnerable in some neurodegenerative diseases, while some neighboring morphologically indistinguishable neurons remain preserved, is still unclear. Molecular analysis of specific neuronal populations can lead us to a better understanding about the physiological role played by these neurons and mechanisms involved in disease\'s processes. In a post-genomic era, proteomic analyses are of great scientific interest since they allow a better understanding of the biological processes. The laser capture microdissection technique has also became an important tool in biological research, being increasingly used for acquisition of pure populations of cells from histological sections, preventing the dissection of areas outside the target tissue. The combination of these methods can significantly contribute to understand the pathophysiological role of the containing neuromelanin neurons of the substantia nigra. However, for an effective application of both techniques, laser capture microdissection and proteomic analysis, it is essential the application of an efficient protocol. In this context, this study aims to establish a protocol for laser microdissection of containing neuromelanin neurons in cognitively normal individuals for subsequent proteomic analyses. We selected cases from the Brain Bank of the Brazilian Aging Brain Study. A collaboration with the Medical Proteome Center, University of Bochum, Germany took part during the development of our proposal. Our protocol was developed based on previous published protocols and optimized according the intended aims. We analyzed anatomical planes for neuronal collection, freezing methods, thickness of tissue for microdissection sections, solution for tissue collection during laser microdissection and the proteolytic digestion methods. Through our comparative tests, we have achieved the desired results and validated them by mass spectrometry analyses. Consequently, we were also able to exclude technical factors that could possibly preclude one effective proteome analysis
20

GABAB and cannabinoid receptors in substantia nigra pars reticulata.

January 1998 (has links)
by Priscilla, Ka-Yee Chan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 77-100). / Abstract also in Chinese. / ACKNOWLEDGEMENTS --- p.4 / ABSTRACT --- p.5 / ABSTRACT (Chinese) --- p.7 / PUBLICATION --- p.8 / ABBREVIATION --- p.9 / Chapter CHAPTER 1 --- INTRODUCTION --- p.10 / Chapter 1.1 --- Overview of the study --- p.10 / Chapter 1.2. --- Substantia nigra pars reticulata (SNR) --- p.12 / Chapter 1.2.1 --- SNR and the basal ganglia / Chapter 1.2.2 --- GABA neurotransmission in SNR / Chapter 1.2.3 --- SNR and epilepsy / Chapter 1.3 --- GABAb receptors --- p.18 / Chapter 1.3.1 --- GABA receptors / Chapter 1.3.2 --- GABAb receptors and their classification / Chapter 1.3.3 --- Agonists and antagonists of GABAb receptor / Chapter 1.3.4 --- Distribution of GAB AB receptor / Chapter 1.3.5 --- GABAb receptors in epilepsy and the involvement of SNR / Chapter 1.4 --- Cannabinoid receptors --- p.24 / Chapter 1.4.1 --- Cannabinoid receptors and their classification / Chapter 1.4.2 --- Agonists and antagonists of cannabinoid receptor / Chapter 1.4.3 --- Distribution of cannabinoid receptors / Chapter 1.4.4 --- Cannabinoid receptors in epilepsy and the involvement of SNR / Chapter CHAPTER 2 --- METHODS --- p.31 / Chapter 2.1 --- Brain slice preparation and maintenance --- p.31 / Chapter 2.2 --- Experimental set-up --- p.32 / Chapter 2.2.1 --- Visualization of neurones / Chapter 2.2.2 --- Electrophysiological recordings / Chapter 2.2.3 --- Evoked stimulation / Chapter 2.2.4 --- Drug preparation and administration / Chapter 2.3 --- Identification of GAB A and dopamine neurones --- p.36 / Chapter 2.4 --- Data analysis --- p.37 / Chapter 2.4.1 --- Construction of dose-response curve / Chapter 2.4.2 --- Analysis of synaptic currents / Chapter 2.4.3 --- Statistics / Chapter CHAPTER 3 --- RESULTS --- p.39 / Chapter 3.1 --- Basic characteristics of IPSCs in SNR --- p.39 / Chapter 3.1.1 --- Spontaneous and miniature IPSCs / Chapter 3.1.2 --- Evoked IPSCs / Chapter 3.2 --- GABAb receptors in SNR --- p.42 / Chapter 3.2.1 --- Postsynaptic GABAb receptors in SNR neurones / Chapter 3.2.1.1 --- Baclofen-activated postsynaptic response / Chapter 3.2.1.2 --- Effects of GABAb receptor antagonist on IPSCs / Chapter 3.2.2 --- Presynaptic GABAb receptors / Chapter 3.2.3 --- Effects of GAB A uptake blocker / Chapter 3.3 --- Cannabinoid receptors in SNR --- p.51 / Chapter 3.3.1 --- Postsynaptic cannabinoid receptors in SNR neurones / Chapter 3.3.2 --- Presynaptic action of cannabinoids / Chapter CHAPTER 4 --- DISCUSSION and CONCLUSION --- p.55 / Chapter 4.1 --- General properties of IPSCs --- p.55 / Chapter 4.2 --- GABAb receptors in SNR neurones --- p.58 / Chapter 4.2.1 --- Postsynaptic GABAB receptors in SNR neurones / Chapter 4.2.2 --- GABAb component in spontaneous and evoked IPSCs / Chapter 4.2.3 --- Presynaptic GABAb receptors in SNR / Chapter 4.2.4 --- Role of GABA uptake / Chapter 4.3 --- Cannabinoid receptors in SNR neurones --- p.67 / Chapter 4.3.1 --- Postsynaptic cannabinoid receptors in SNR neurones / Chapter 4.3.2 --- Presynaptic cannabinoid receptors in SNR / Chapter 4.4 --- SNR GABAb and cannabinoid receptors - their role in epilepsy --- p.72 / Chapter 4.5 --- Concluding remarks and future direction --- p.75 / REFERENCES --- p.77

Page generated in 0.0719 seconds