Spelling suggestions: "subject:"cabased allow"" "subject:"cadbased allow""
21 |
Etude de l'Evolution Physico-Chimique du Substrat lors de l'Oxydation à Haute Température des Alliages Modèle Ni-Cr à Faible Teneur en Chrome et de l'Alliage Modèle Ni-16Cr-9Fe / Physico-Chemical Modifications of Chromium-Depleted Layers during High Temperature Oxidation of Model Ni-Cr Alloys with Low Cr content and a Model Ni-16Cr-9Fe.Nicolas, André 11 October 2012 (has links)
Le travail réalisé au cours de cette thèse concerne l’analyse des conséquences de l’oxydation à 950°C des alliages base Ni sur la composition de l’alliage à proximité de l’interface alliage/oxyde. Deux catégories d’alliages ont été analysées : alliages à faible teneur en chrome conduisant à l’oxydation interne et l’alliage chromino-formeur Ni-16Cr-9Fe.Une description complète des mécanismes de l’oxydation interne du chrome est obtenue à partir du développement du modèle analytique de Wagner d’oxydation interne et du développement du modèle numérique de Feulvarch. Ces modèles décrivent l’évolution de l’oxydation interne jusqu’à la transition oxydation interne / oxydation externe à 11 %poids de chrome environ.L’analyse par la spectroscopie d’électrons Auger de l’alliage modèle Ni-16Cr-9Fe à 950°C oxydé pendant 10 heures a permis d’explorer la zone à proximité immédiate de l’interface alliage/oxyde et de déterminer la concentration en chrome à l’interface à 0,5%poids (i.e. dans 20 premiers nanomètres), ce qui est en accord avec le modèle analytique de Wagner d’oxydation en couche compacte. La description des profils de déchromisation et des profils de cavités pour plusieurs temps d’exposition allant de 100h à 5000h a permis de mettre en évidence une corrélation forte entre ces deux phénomènes (même constante parabolique). Pour ces durées d’oxydation les profils de déchromisation présentent un point d’inflexion ce qui se traduit par l’augmentation de la teneur en chrome à l’interface. Les résultats sont interprétés dans le cadre d’un nouveau modèle analytique avec l’hypothèse d’injection des lacunes produites par l’effet Kirkendall au point d’inflexion. / The present work is focused on the consequences of oxidation at 950°C on the nature of a chromium-depleted area in Ni-based alloys. Two classes of alloys were analysed : low chromium Ni-Cr alloys and a typical chromia-former Ni-16Cr-9Fe.A complete description of the mechanisms of nodular oxidation is obtained from the development of both the Wagner’s analytical model of internal oxidation and the Feulvarch’s numerical model. These models describe the evolution of nodular oxidation up to the transition between internal to external oxidation which happens at around 11 wt%Cr.Auger Electron Spectroscopy (AES) measurements on a model Ni-16Cr-9Fe alloy oxidised at 950°C during 10 hours has allowed a detailed analysis in the immediate vicinity of the oxide/alloy interface and resulted in a very low Cr content in first 20 nm of the subsurface layer. This result is in agreement with Wagner’s theory of external oxidation of binary alloys. Higher oxidation times, from 100h to 5000h, have resulted in extensive cavitation and chromium depletion, both quantified respectively by image analysis and EDX. These profiles appear to be strongly correlated (same parabolic constant). Higher oxidation times result in an inflection point on chromium depletion profile and higher Cr interface content, which are due to the increased chromium diffusivity. The overall results are interpreted in the frame of a new analytical model based on the assumption of Kirkendall vacancy injection at the inflection point.
|
22 |
Étude et compréhension des mécanismes d'endommagement de surface de matrices de forgeage à chaud rechargées / Assessment of surface damage mechanisms of hardfaced hot forging diesCabrol, Elodie 11 December 2015 (has links)
Dans le domaine du forgeage à chaud de pièces aéronautiques, les matrices en acier sont couramment rechargées, sur quelques millimètres d’épaisseur, par un alliage base cobalt (Stellite 21) déposé par procédé de soudage à l’arc (MIG). Dans le cadre de ce travail de thèse, ce rechargement « classique» est comparé à des rechargements Stellite 21 et Stellite 6 déposés par deux procédés émergents dans ce domaine, le PTA et le LASER. L’objectif est d’apporter des éléments de compréhension aux mécanismes d’endommagement de surface, notamment par écoulement plastique, de ces différents rechargements afin de dégager des voies d’amélioration pour augmenter la durée de vie des matrices. Pour cela, des essais tribologiques (semi-industriels et laboratoire) ont été mis en œuvre pour créer des endommagements de surface comparables à ceux observés sur matrices industrielles. Associées à ces essais, des investigations microstructurales, structurales et mécaniques multi-échelles ont été réalisées (traction, flexion, microdureté, MO, MEB, MEB-STEM, DRX, EBSD). Selon les couples « nuance/procédé » de rechargement, des mécanismes de déformation plastique par glissement des dislocations parfaites et par transformation de phase CFC en HC ont été identifiés. L’activation de ce dernier a pu être reliée à la température de transformation allotropique CFC/HC du cobalt. Cette température dépend à la fois (i) des éléments d’addition, variant en fonction de la nuance déposée (Cr, C,...), (ii) de la dilution (variation de la teneur en Fe) liée aux paramètres de soudage et (iii) du nombre de couches déposées. De plus, une influence significative de la transformation de phase sur l’évolution du coefficient de frottement a été mise en évidence. En effet, dans le cas où la transformation de phase n’est pas observée, le coefficient de frottement est stable durant l'essai alors qu'une chute de la courbe de coefficient de frottement a été reliée avec la transformation de phase CFC en HC. Parallèlement, l'écoulement plastique des dendrites est observé en extrême surface sur quelques dizaines de micromètre d'épaisseur dans la direction de glissement. Cet écoulement est associé à une forte texturation morphologique et cristallographique de la phase identifiée (CFC ou HC), avec une orientation des plans de plus grande densité atomique parallèlement à la surface de glissement. Les résultats montrent également que sous sollicitations tribologiques, un important durcissement est observé en surface (jusqu'à 90%) et une corrélation a pu être établie entre l'augmentation de la microdureté et le taux de déformation plastique. / In the field of hot forging of aeronautical parts, the steel dies are commonly hardfaced, on few millimeters thick, by a cobalt-based alloy (Stellite 21) deposited by arc welding (MIG). As part of this thesis, this "classic" hardfacing is compared to Stellite 21 and Stellite 6 hardfacings deposited by two emerging processes in this area, the PTA and the LASER one. The objective is to assess surface damage mechanisms, especially induced by plastic strain, of these various hardfacings. Tribological tests (laboratory and semi-industrial) were used to create surface damage comparable to those observed in industrial dies. Associated with these tests, multiscale microstructural, structural and mechanical investigations have been performed (tensile, bending, microhardness, OM, SEM, STEM, XRD, EBSD). According to the « material/process » couple, plastic strain mechanisms by perfect dislocation glide and by FCC to HCP phase transformation have been identified. The activation of the latter has been connected to the temperature of the allotropic phase transformation (FCC/HCP) in cobalt. This temperature depends on (i) the alloying elements, varying according to the deposited grade (Cr, C, ...), (ii) the dilution (Fe content evolution) connected to the welding parameters and (iii) the number of deposited layer. Moreover, a significant influence of the phase transformation on the evolution of the friction coefficient has been evidenced. Indeed, if the phase transformation is not observed, the friction coefficient is stable during the test, while a drop of the friction coefficient curve is connected with the FCC to HCP phase transformation. Moreover, the plastic flow of dendrites is observed at the extreme surface, on a few tens of micrometres in thickness, in the direction of sliding. It is associated with a high morphologic and crystallographic texturing of the identified phase (FCC or HCP), with the highest atomic density planes mostly oriented parallel to the sliding surface. The results also show that, under tribological laodings, a significant hardening is observed on the surface (up to 90%) and a correlation has been established between the increase in the microhardness and the plastic deformation ratio.
|
23 |
Effect of Heat Treatment and Modification on Flow and Fracture Behaviour of a Newly Developed Al-Si Based Cast AlloyJoseph, Sudha January 2013 (has links) (PDF)
The compression behavior of a newly developed near eutectic Al-Si based cast alloy with three different microstructures has been investigated in the present work. Microstructures with modified and unmodified Si particles and matrix with different tempers are investigated. The main objective of this work is to understand the effect of heat treatment and modification on the fracture behavior of the alloy under compression. This alloy is subjected to compressive loading at different strain rates and temperatures during the operation of the engines. Hence, the effect of strain rates and temperatures is also considered. The compression tests are carried out at different strain rates from quasi-static to dynamic viz., 3*10-4 to 102/s and three different temperatures RT, 100°C and 200°C.
Microstructure of the alloys studied predominantly consists of eutectic colonies of α-Al and Si with a few interspersed α-Al dendrites. Modified alloy has more globular Si particles than unmodified alloy. Heat treated alloys are found to have hardening precipitates S’ & Al7Cu4Ni and 3-7 atomic layer thick zones, which may be precursors to S’ phase. A variety of large intermetallics, viz., plate like particles Al4.5FeSi, Chinese script like particles Al19Fe4MnSi2 and bulky phase Al3NiCu are also observed in the alloys.
Mechanical behavior of the alloys is found to be different for different microstructures. Modification improves strength and ductility. Heat treatment improves strength of the alloy at the expense of ductility. A transition in mechanical behavior is observed after a particular strain rate for all the alloys studied. This transition strain rate is dependent on heat treatment, Si particle size and temperature. This transition can be explained on the basis of dislocation-precipitate and dislocation-Si particle interactions. Work hardening behavior of the alloys depends on the matrix microstructure in the unmodified alloys, and both matrix and particles play a role in the modified alloy.
A statistically robust quantitative micro structural analysis has been carried out after compressing the samples at various strain rates and temperatures. The unique contribution of this work is the understanding of combined effect of strain rate and temperature on Si particle fracture characteristics in the alloy with different microstructures. From the fracture characteristics of Si particles, it is concluded that both dislocation pile-up mechanism and fibre loading are responsible for particle fracture in the modified alloy, whereas the fibre loading mechanism alone is sufficient to explain the particle fracture characteristics in the unmodified alloy. Si particles in the modified condition are found to cleave along the lowest surface energy planes {112} & {110} and the particles with orientations {112} & {111} are more prone to fracture.
In addition to Si particle fracture, elongated Fe rich intermetallic particles are also seen to show peculiar fracture behavior. The Al4.5FeSi intermetallics with (100) as the plane of the plate cleave along (100) planes. This is a novel finding in this work and could have immense implications on the role of Fe impurities in the fracture behavior of these alloys. Moreover, since these cleavage fractures are seen to be more than 200 microns in size (which implies that the real penny shaped crack would be even larger) their role cannot be assumed to be negligible, as was previously thought.
The load sharing between the Al matrix and eutectic Si particles are simulated by microstructure based finite element modeling. The program OOF (Object-Oriented Finite element analysis) is used to generate the finite element meshes for real microstructures with different Si morphology. The experimentally obtained stress – strain properties of the alloy is given as an input to describe the plastic behavior of the Al matrix, in the finite element simulation. This analysis helps to understand the effect of particle size, shape, orientation & clustering and matrix temper on the stress transferred to the Si particles. Combination of Electron Back-Scattered Diffraction (EBSD) and frequency shift, polarized micro-Raman technique is applied to validate the stress states in Si particles with {111} orientations. The stress at fracture of Si particles is also estimated from Raman technique.
Even though the alloys with different microstructures show different mechanical behavior, the sequence of fracture mechanisms is found to be same for all the alloys. The failure occurs in three stages: cracking of Si particles at low strains, micro-crack formation along the fractured particles, micro-crack coalescence and propagation leading to final failure. Thus, the proposed analysis links various deformation mechanisms ranging from nano precipitate-dislocation interactions to micro short-fiber theory of load sharing by eutectic silicon along with coupled effect of strain rate and temperature.
In addition, negative strain rate sensitivity is also observed in the lower strain rate regimes (3*10-4, 10-3& 102/s) at RT and 100°C for all the three alloys, and serrated flow is also observed in the same strain rate and temperature regimes. Some of the features of serrated flow can be explained by the dynamic strain aging model and some other features by precipitate shearing.
|
Page generated in 0.0485 seconds