• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 103
  • 15
  • 13
  • 12
  • 9
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 204
  • 204
  • 93
  • 67
  • 31
  • 29
  • 22
  • 22
  • 20
  • 20
  • 20
  • 19
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Microfluidic Devices for Terahertz Spectroscopy of Live Cells Toward Lab-on-a-Chip Applications

Tang, Qi, Liang, Min, Lu, Yi, Wong, Pak, Wilmink, Gerald, Zhang, Donna, Xin, Hao 04 April 2016 (has links)
THz spectroscopy is an emerging technique for studying the dynamics and interactions of cells and biomolecules, but many practical challenges still remain in experimental studies. We present a prototype of simple and inexpensive cell-trapping microfluidic chip for THz spectroscopic study of live cells. Cells are transported, trapped and concentrated into the THz exposure region by applying an AC bias signal while the chip maintains a steady temperature at 37 degrees C by resistive heating. We conduct some preliminary experiments on E. coli and T-cell solution and compare the transmission spectra of empty channels, channels filled with aqueous media only, and channels filled with aqueous media with un-concentrated and concentrated cells.
12

Magnetic Nanoparticle Enhanced Actuation Strategy for mixing, separation, and detection of biomolecules in a Microfluidic Lab-on-a-Chip System

Munir, Ahsan 20 May 2012 (has links)
Magnetic nanoparticle (MNP) combined with biomolecules in a microfluidic system can be efficiently used in various applications such as mixing, pre-concentration, separation and detection. They can be either integrated for point-of care applications or used individually in the area of bio-defense, drug delivery, medical diagnostics, and pharmaceutical development. The interaction of magnetic fields with magnetic nanoparticles in microfluidic flows will allow simplifying the complexity of the present generation separation and detection systems. The ability to understand the dynamics of these interactions is a prerequisite for designing and developing more efficient systems. Therefore, in this work proof-of-concept experiments are combined with advanced numerical simulation to design, develop and optimize the magnetic microfluidic systems for mixing, separation and detection. Different strategies to combine magnetism with microfluidic technology are explored; a time-dependent magnetic actuation is used for efficiently mixing low volume of samples whereas tangential microfluidic channels were fabricated to demonstrate a simple low cost magnetic switching for continuous separation of biomolecules. A simple low cost generic microfluidic platform is developed using assembly of readily available permanent magnets and electromagnets. Microfluidic channels were fabricated at much lower cost and with a faster construction time using our in-house developed micromolding technique that does not require a clean room. Residence-time distribution (RTD) analysis obtained using dynamic light scattering data from samples was successfully used for the first time in microfluidic system to characterize the performance. Both advanced multiphysics finite element models and proof of concept experimentation demonstrates that MNPs when tagged with biomolecules can be easily manipulated within the microchannel. They can be precisely captured, separated or detected with high efficiency and ease of operation. Presence of MNPs together with time-dependent magnetic actuation also helps in mixing as well as tagging biomolecules on chip, which is useful for point-of-care applications. The advanced mathematical model that takes into account mass and momentum transport, convection & diffusion, magnetic body forces acting on magnetic nanoparticles further demonstrates that the performance of microfluidic surface-based bio-assay can be increased by incorporating the idea of magnetic actuation. The numerical simulations were helpful in testing and optimizing key design parameters and demonstrated that fluid flow rate, magnetic field strength, and magnetic nanoparticle size had dramatic impact on the performance of microfluidic systems studied. This work will also emphasize the importance of considering magnetic nanoparticles interactions for a complete design of magnetic nanoparticle-based Lab-on-a-chip system where all the laboratory unit operations can be easily integrated. The strategy demonstrated in this work will not only be easy to implement but also allows for versatile biochip design rules and provides a simple approach to integrate external elements for enhancing mixing, separation and detection of biomolecules. The vast applications of this novel concept studied in this work demonstrate its potential of to be applied to other kinds of on-chip immunoassays in future. We think that the possibility of integrating magnetism with microfluidic-based bioassay on a disposable chip is a very promising and versatile approach for point-of care diagnostics especially in resource-limited settings.
13

Noise Analysis and Measurement of Integrator-based Sensor Interface Circuits for Fluorescence Detection in Lab-on-a-chip Applications

Jensen, Karl Andrew 17 May 2013 (has links)
Lab-on-a-chip (LOC) biological assays have the potential to fundamentally reform healthcare. The move away from centralized facilities to Point-of-Care (POC) testing of biological assays would improve the speed and accuracy of these, thereby improving patient care. Before LOC can be realized, a number of challenges must be addressed: the need for expert users must be abstracted away; the manufacturing cost of $5 per test threshold must be met; and the supporting infrastructure must be integrated down to an easily portable size. These challenges can be addressed with the deposition of microfluidics on CMOS chips. By designing application specific integrated circuits (ASICs) much of the automation and the supporting infrastructure needed to run these assays can be integrated into the chip. Additionally, CMOS fabrication is some of the most optimized manufacturing in industry today. One of the central challenges with LOC on ASIC is the signal acquisition from the microfluidics into the CMOS. Optical sensing of fluorescence is one form of sensing used for LOC assays. Despite a large literature, there has not been a strong demonstration of monolithic LOC fluorescence detection (FD) for low concentration samples. This work explores the limit-of-detection (LOD) for LOC FD through analysis of the signal and noise of a proposed acquisition channel. The proposed signal acquisition channel consists of an on chip photodiode and integrator based amplification circuits. A hand analysis of the signal propagation through the channel and the noise sources introduced by the circuitry, is performed. This analysis is used to establish relationships between different circuit parameters and the LOD of a hypothetical LOC device. The hand analysis is verified through simulation and the acquisition channel is implemented in: (i) the Austrian Microsystems 350nm CMOS process, (ii) discrete components. Testing of the CMOS chip revealed several issues not identified in extracted simulation; however, the discrete integrator demonstrated many of the trends predicted by the hand analysis and simulations and achieved a LOD of 7.2$\mu M$. This analysis provides insight into the engineering trade-offs required to improve the LOD, to enable more wide spread application of LOC FD.
14

Development of a High-throughput Electrokinetically-controlled Heterogeneous Immunoassay Microfluidic Chip

Gao, Yali 22 March 2010 (has links)
This thesis was on the development of a high-throughput electrokinetically-controlled heterogeneous immunoassay (EK-IA) microfluidic chip for clinical application. Through a series of experimental studies, a high-throughput EK-IA was developed. This EK-IA was capable of automatically screening multiple analytes from up to 10 samples in parallel, in only 26 min. Flow control in an integrated microfluidic network was realized by numerical simulation of the transport processes. This EK-IA was successfully applied to detect E. coli O157:H7 antibody and H. pylori antibody from human sera with satisfactory accuracy. Simultaneous screening of both antibodies from human sera was also achieved, demonstrating the potential of this EK-IA for efficiently detecting multiple pathogenic infections in clinical settings. Preliminary work on the application of EK-IA to detect biomarkers of embryo development in embryo culture media also yielded good results. In addition to the experimental studies, the reaction kinetics of this microfluidic EK-IA has also been investigated, using both numerical simulation and a modified Damköhler number. Targeted towards a more sensitive assay, the influences of several important parameters on the reaction kinetics were studied. This EK-IA holds great promise for automated and high-throughput immunoassay in clinical environments.
15

Development of a High-throughput Electrokinetically-controlled Heterogeneous Immunoassay Microfluidic Chip

Gao, Yali 22 March 2010 (has links)
This thesis was on the development of a high-throughput electrokinetically-controlled heterogeneous immunoassay (EK-IA) microfluidic chip for clinical application. Through a series of experimental studies, a high-throughput EK-IA was developed. This EK-IA was capable of automatically screening multiple analytes from up to 10 samples in parallel, in only 26 min. Flow control in an integrated microfluidic network was realized by numerical simulation of the transport processes. This EK-IA was successfully applied to detect E. coli O157:H7 antibody and H. pylori antibody from human sera with satisfactory accuracy. Simultaneous screening of both antibodies from human sera was also achieved, demonstrating the potential of this EK-IA for efficiently detecting multiple pathogenic infections in clinical settings. Preliminary work on the application of EK-IA to detect biomarkers of embryo development in embryo culture media also yielded good results. In addition to the experimental studies, the reaction kinetics of this microfluidic EK-IA has also been investigated, using both numerical simulation and a modified Damköhler number. Targeted towards a more sensitive assay, the influences of several important parameters on the reaction kinetics were studied. This EK-IA holds great promise for automated and high-throughput immunoassay in clinical environments.
16

The Design and Evaluation of a Microfluidic Cell Sorting Chip

Taylor, Jay Kendall January 2007 (has links)
Many applications for the analysis and processing of biological materials require the enrichment of cell subpopulations. Conventional cell sorting systems are large and expensive with complex equipment that necessitates specialized personnel for operation. Employing microfluidics technology for lab-on-a-chip adaptation of these devices provides several benefits: improved transport control, reduced sample volumes, simplicity of operation, portability, greater accessibility, and reduced cost. The designs of microfluidic cell sorting chips vary widely in literature; evaluation and optimization efforts are rarely reported. This study intends to investigate the primary components of the design to understand the effect of various parameters and to improve the performance of the microfluidic chip. Optimized individual elements are incorporated into a proposed cell sorter chip with the ability to dynamically sort target cells from a non-homogeneous solution using electrical driving forces. Numerical and experimental results are used to evaluate the sample focusing element for controlled cell dispensing, the sorting configuration for target cell collection, and the flow elements for reduced pressure effects and prevention of flow blockages. Compact models are adapted to solve the potential field and flow field in the chip and to predict the focused sample stream width. A commercial CFD package is used to perform 2-D simulations of the potential, velocity, and concentration fields. A fluorescence microscopy visualization system is implemented to conduct experiments on several generations of chip designs. The data from sample focusing experiments, performed with fluorescent dye samples, is analyzed using a Gaussian distribution model proposed in this work. A technique for real-time monitoring of fluorescent microspheres in the microfluidic chip enables the use of dynamic cell sorting to emulate fully autonomous operation. The performance values obtained from these experiments are used to characterize the various design configurations. Sample focusing is shown to depend largely on the relative size of the sheath fluid channel and the sample channel, but is virtually independent of the junction shape. Savings in the applied potential can be achieved by utilizing the size dependency. The focusing performance also provides information for optimizing the widths of the channels relative to the cell size. Successful sorting of desired cells is demonstrated for several designs. Key parameters that affect the sorting performance are discussed; a design employing the use of supplemental fluid streams to direct the particle during collection is chosen due to a high sorting evaluation and a low sensitivity to flow anomalies. The necessary reduction of pressure influences to achieve reliable flow conditions is accomplished by introducing channel constrictions to increase the hydrodynamic resistance. Also, prolonged operation is realized by including particle filters in the proposed design to prevent blockages caused by the accumulation of larger particles. A greater understanding of the behaviour of various components is demonstrated and a design is presented that incorporates the elements with the best performance. The capability of the microfluidic chip is summarized based on experimental results of the tested designs and theoretical cell sorting relationships. Adaptation of this chip to a stand-alone, autonomous device can be accomplished by integrating an optical detection system and further miniaturization of the critical components.
17

Electrokinetic and acoustic manipulations of colloidal and biological particles

Park, Seungkyung 15 May 2009 (has links)
Recent advances in microfluidic technologies have enabled integration of the functional units for biological and chemical analysis onto miniaturized chips, called Labon- a-Chip (LOC). However, the effective manipulation and control of colloidal particles suspended in fluids are still challenging tasks due to the lack of clear characterization of particle control mechanisms. The aim of this dissertation is to develop microfluidic techniques and devices for manipulating colloids and biological particles with the utilization of alternating current (AC) electric fields and acoustic waves. The dissertation presents a simple theoretical tool for predicting the motion of colloidal particles in the presence of AC electric field. Dominant electrokinetic forces are explained as a function of the electric field conditions and material properties, and parametric experimental validations of the model are conducted with particles and biological species. Using the theoretical tool as an effective framework for designing electrokinetic systems, a dielectrophoresis (DEP) based microfluidic device for trapping bacterial spores from high conductivity media is developed. With a simple planar electrode having well defined electric field minima that can act as the targetattachment/ detection sites for integration of biosensors, negative DEP trapping of spores on patterned surfaces is successfully demonstrated. A further investigation of DEP colloidal manipulation under the effects of electrothermal flow induced by Joule heating of the applied electric field is conducted. A periodic structure of the electrothermal flow that enhances DEP trapping is numerically simulated and experimentally validated. An acoustic method is investigated for continuous sample concentration in a microscale device. Fast formation of particle streams focused at the pressure nodes is demonstrated by using the long-range forces of the ultrasonic standing waves (USW). High frequency actuation suitable for miniaturization of devices is successfully applied and the device performance and key parameters are explained. Further extension and integration of the technologies presented in this dissertation will enable a chip scale platform for various chemical and biological applications such as drug delivery, chemical analyses, point-of-care clinical diagnosis, biowarfare and biochemical agent detection/screening, and water quality control.
18

Noise Analysis and Measurement of Integrator-based Sensor Interface Circuits for Fluorescence Detection in Lab-on-a-chip Applications

Jensen, Karl Andrew 17 May 2013 (has links)
Lab-on-a-chip (LOC) biological assays have the potential to fundamentally reform healthcare. The move away from centralized facilities to Point-of-Care (POC) testing of biological assays would improve the speed and accuracy of these, thereby improving patient care. Before LOC can be realized, a number of challenges must be addressed: the need for expert users must be abstracted away; the manufacturing cost of $5 per test threshold must be met; and the supporting infrastructure must be integrated down to an easily portable size. These challenges can be addressed with the deposition of microfluidics on CMOS chips. By designing application specific integrated circuits (ASICs) much of the automation and the supporting infrastructure needed to run these assays can be integrated into the chip. Additionally, CMOS fabrication is some of the most optimized manufacturing in industry today. One of the central challenges with LOC on ASIC is the signal acquisition from the microfluidics into the CMOS. Optical sensing of fluorescence is one form of sensing used for LOC assays. Despite a large literature, there has not been a strong demonstration of monolithic LOC fluorescence detection (FD) for low concentration samples. This work explores the limit-of-detection (LOD) for LOC FD through analysis of the signal and noise of a proposed acquisition channel. The proposed signal acquisition channel consists of an on chip photodiode and integrator based amplification circuits. A hand analysis of the signal propagation through the channel and the noise sources introduced by the circuitry, is performed. This analysis is used to establish relationships between different circuit parameters and the LOD of a hypothetical LOC device. The hand analysis is verified through simulation and the acquisition channel is implemented in: (i) the Austrian Microsystems 350nm CMOS process, (ii) discrete components. Testing of the CMOS chip revealed several issues not identified in extracted simulation; however, the discrete integrator demonstrated many of the trends predicted by the hand analysis and simulations and achieved a LOD of 7.2$\mu M$. This analysis provides insight into the engineering trade-offs required to improve the LOD, to enable more wide spread application of LOC FD.
19

Novel nano-liter scale microfluidic platform for protein kinetics

Jambovane, Sachin Ranappa, Hong, Jong Wook, January 2008 (has links)
Thesis--Auburn University, 2008. / Abstract. Vita. Includes bibliographical references (p. 78-81).
20

Validation and Development of Top-Down Illumination for Optofluidic Biosensors

Hamblin, Matthew Marley 12 April 2023 (has links) (PDF)
Lab-on-a-chip devices are changing the way that medical testing is performed by allowing rapid testing with small samples. Optofluidic biosensors are a type of lab-on-a-chip device that use light excitation on a fluid sample. One such application of an optofluidic biosensor is a device that can detect antibiotic resistant bacteria by combining DNA from a sample with fluorescent beads, flowing that sample through a hollow channel, and shining laser light on the channel. If the bacteria tested for is present, the fluorescent beads will give off photons that can be detected as a positive signal. The main method for illumination for these devices has been coupling light through a fiber optic cable to a waveguide on the side of the chip. Though effective, this method is impractical in a real world setting such as a hospital due to the difficulty of aligning to the side of the device. One solution to this problem is the use of illumination from the top of the device. Top-down illumination allows for more alignment flexibility, but also introduces the risk of additional noise or false signal as extra light reflects of the device. This dissertation discusses the viability and development of top-down illumination for optofluidic biosensors. This includes the development of an anti-reflective layer compatible with optofluidic biosensors, comparison of top-down illumination to side illumination, and simulations of various methods of performing top-down illumination. Based on the research and findings discussed in this dissertation, it has been found that top-down illumination is a viable illumination method for optofluidic biosensors. Additionally, the use of a pattern of laser lines combined with a light blocking anti-reflective layer is the recommended method for top-down illumination.

Page generated in 0.0525 seconds