1 |
LOW COST DATA ACQUISITION FOR AUTONOMOUS VEHICLEDong Hun Lee (9040400) 29 June 2020 (has links)
The study of this research has a challenge of learning data gathering sensor programming and design of electronic sensor circuit. The cost of autonomous vehicle development is expensive compared to purchasing an economy vehicle such as the Hyundai Elantra. Keeping the development cost down is critical to maintaining a competitive edge on vehicle pricing with newer technologies. Autonomous vehicle sensor integration was designed and then tested for the driving vision data-gathering system that requires the system to gather driving vision data utilizing area scan sensors, Lidar, ultrasonic sensor, and camera on real road scenarios. The project utilized sensors such as cheap cost LIDAR, which is that drone is used for on the road testing; other sensors include myRIO (myRIO Hardware), LabVIEW (LabVIEW software), LIDAR-Lite v3 (Garmin, 2019), Ultrasonic sensor, and Wantai stepper motor (Polifka, 2020). This research helps to reduce the price of usage of autonomous vehicle driving systems in the city. Due to resolution and Lidar detecting distance, the test environment is limited to within city areas. Lidar is the most expensive equipment on autonomous vehicle driving data gathering systems. This study focuses on replacing expensive Lidar, ultrasonic sensor, and camera to drone scale low-cost Lidar to real size vehicle. With this study, economic expense autonomous vehicle driving data acquisition is possible. Lowering the price of autonomous vehicle driving data acquisition increases involving new companies on the autonomous vehicle market. Multiple testing with multiple cars is possible. Since multiple testing at the same time is possible, collecting time reduces.
|
2 |
Pracoviště pro měření průtoku a tlaku / Workplace of flow and pressure measurementBrabenec, Jiří January 2008 (has links)
The thesis deals with formation of a workplace for preparation gaseous mixtures and their future usage. The main goal of the thesis is testing of new materials which have suitable usage as catalysts. Gaseous mixture is prepared by calorimetric mass flow meters with control valve and multiposition microelectric valve actuators. The next part describes measuring of pressure and temperature and controlling of furnace temperature. The thesis deals with specifications of all devices, their circuitry, communication and program controlling. All devices are controlled by computer with program which is programmed in LabVIEW.
|
3 |
DEVELOPING AN APPROACH TO IMPROVE BETA-PHASE PROPERTIES IN FERROELECTRIC PVDF-HFP THIN FILMSAshley S Dale (8771429) 02 May 2020 (has links)
Improved fabrication of poly(vinylindenefluoride)-hexafluoropropylene (PVDF-HFP) thin films is of particular interest due to the high electric coercivity found in the beta-phase structure of the thin film. We show that it is possible to obtain high-quality, beta-phase dominant PVDF-HFP thin films using a direct approach to Langmuir-Blodgett deposition without the use of annealing or additives. To improve sample quality, an automated Langmuir-Blodgett thin film deposition system was developed; a custom dipping trough was fabricated, a sample dipping mechanism was designed and constructed, and the system was automated using custom LabVIEW software. Samples were fabricated in the form of ferroelectric capacitors on substrates of glass and silicon, and implement a unique step design with a bottom electrode of copper with an aluminum wetting layer and a top electrode of gold with an aluminum wetting layer. Samples were then characterized using a custom ferroelectric measurement program implemented in LabVIEW with a Keithley picoammeter/voltage supply to confirm electric coercivity properties. Further characterization using scanning electron microscopy and atomic force microscopy confirmed the improvement in thin film fabrication over previous methods.
|
4 |
Developing an approach to improve beta-phase properties in ferroelectric pvd-hfp thin filmsDale, Ashley S. 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Improved fabrication of poly(vinylindenefluoride)-hexafluoropropylene (PVDF-HFP) thin films is of particular interest due to the high electric coercivity found in the beta-phase structure of the thin film. We show that it is possible to obtain high-quality, beta-phase dominant PVDF-HFP thin films using a direct approach to Langmuir-Blodgett deposition without the use of annealing or additives. To improve sample quality, an automated Langmuir-Blodgett thin film deposition system was developed; a custom dipping trough was fabricated, a sample dipping mechanism was designed and constructed, and the system was automated using custom LabVIEW software. Samples were fabricated in the form of ferroelectric capacitors on substrates of glass and silicon, and implement a unique step design with a bottom electrode of copper with an aluminum wetting layer and a top electrode of gold with an aluminum wetting layer. Samples were then characterized using a custom ferroelectric measurement program implemented in LabVIEW with a Keithley picoammeter/voltage supply to confirm electric coercivity properties. Further characterization using scanning electron microscopy and atomic force microscopy confirmed the improvement in thin film fabrication over previous methods.
|
Page generated in 0.03 seconds