• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ExploringWeakly Labeled Data Across the Noise-Bias Spectrum

Fisher, Robert W. H. 01 April 2016 (has links)
As the availability of unstructured data on the web continues to increase, it is becoming increasingly necessary to develop machine learning methods that rely less on human annotated training data. In this thesis, we present methods for learning from weakly labeled data. We present a unifying framework to understand weakly labeled data in terms of bias and noise and identify methods that are well suited to learning from certain types of weak labels. To compensate for the tremendous sizes of weakly labeled datasets, we leverage computationally efficient and statistically consistent spectral methods. Using these methods, we present results from four diverse, real-world applications coupled with a unifying simulation environment. This allows us to make general observations that would not be apparent when examining any one application on its own. These contributions allow us to significantly improve prediction when labeled data is available, and they also make learning tractable when the cost of acquiring annotated data is prohibitively high.
2

Active learning in cost-sensitive environments

Liu, Alexander Yun-chung 21 June 2010 (has links)
Active learning techniques aim to reduce the amount of labeled data required for a supervised learner to achieve a certain level of performance. This can be very useful in domains where unlabeled data is easy to obtain but labelling data is costly. In this dissertation, I introduce methods of creating computationally efficient active learning techniques that handle different misclassification costs, different evaluation metrics, and different label acquisition costs. This is accomplished in part by developing techniques from utility-based data mining typically not studied in conjunction with active learning. I first address supervised learning problems where labeled data may be scarce, especially for one particular class. I revisit claims about resampling, a particularly popular approach to handling imbalanced data, and cost-sensitive learning. The presented research shows that while resampling and cost-sensitive learning can be equivalent in some cases, the two approaches are not identical. This work on resampling and cost-sensitive learning motivates a need for active learners that can handle different misclassification costs. After presenting a cost-sensitive active learning algorithm, I show that this algorithm can be combined with a proposed framework for analyzing evaluation metrics in order to create an active learning approach that can optimize any evaluation metric that can be expressed as a function of terms in a confusion matrix. Finally, I address methods for active learning in terms of different utility costs incurred when labeling different types of points, particularly when label acquisition costs are spatially driven. / text
3

Automatic Emotion Identification from Text

Wang, Wenbo 02 September 2015 (has links)
No description available.
4

SELEÇÃO DE VARIÁVEIS NA MINERAÇÃO DE DADOS AGRÍCOLAS:Uma abordagem baseada em análise de componentes principais

Jr., Juscelino Izidoro de Oliveira 30 July 2012 (has links)
Made available in DSpace on 2017-07-21T14:19:33Z (GMT). No. of bitstreams: 1 Juscelino Izidoro Oliveira.pdf: 622255 bytes, checksum: 54447b380bca4ea8e2360060669d5cff (MD5) Previous issue date: 2012-07-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Multivariate data analysis allows the researcher to verify the interaction among a lot of attributes that can influence the behavior of a response variable. That analysis uses models that can be induced from experimental data set. An important issue in the induction of multivariate regressors and classifers is the sample size, because this determines the reliability of the model for tasks of regression or classification of the response variable. This work approachs the sample size issue through the Theory of Probably Approximately Correct Learning, that comes from problems about machine learning for induction of models. Given the importance of agricultural modelling, this work shows two procedures to select variables. Variable Selection by Principal Component Analysis is an unsupervised procedure and allows the researcher to select the most relevant variables from the agricultural data by considering the variation in the data. Variable Selection by Supervised Principal Component Analysis is a supervised procedure and allows the researcher to perform the same process as in the previous procedure, but concentrating the focus of the selection over the variables with more influence in the behavior of the response variable. Both procedures allow the sample complexity informations to be explored in variable selection process. Those procedures were tested in five experiments, showing that the supervised procedure has allowed to induce models that produced better scores, by mean, than that models induced over variables selected by unsupervised procedure. Those experiments also allowed to verify that the variables selected by the unsupervised and supervised procedure showed reduced indices of multicolinearity. / A análise multivariada de dados permite verificar a interação de vários atributos que podem influenciar o comportamento de uma variável de resposta. Tal análise utiliza modelos que podem ser induzidos de conjuntos de dados experimentais. Um fator importante na indução de regressores e classificadores multivariados é o tamanho da amostra, pois, esta determina a contabilidade do modelo quando há a necessidade de se regredir ou classificar a variável de resposta. Este trabalho aborda a questão do tamanho da amostra por meio da Teoria do Aprendizado Provavelmente Aproximadamente Correto, oriundo de problemas sobre o aprendizado de máquina para a indução de modelos. Dada a importância da modelagem agrícola, este trabalho apresenta dois procedimentos para a seleção de variáveis. O procedimento de Seleção de Variáveis por Análise de Componentes Principais, que não é supervisionado e permite ao pesquisador de agricultura selecionar as variáveis mais relevantes de um conjunto de dados agrícolas considerando a variação contida nos dados. O procedimento de Seleção de Variáveis por Análise de Componentes Principais Supervisionado, que é supervisionado e permite realizar o mesmo processo do primeiro procedimento, mas concentrando-se apenas nas variáveis que possuem maior infuência no comportamento da variável de resposta. Ambos permitem que informações a respeito da complexidade da amostra sejam exploradas na seleção de variáveis. Os dois procedimentos foram avaliados em cinco experimentos, mostrando que o procedimento supervisionado permitiu, em média, induzir modelos que produziram melhores pontuações do que aqueles modelos gerados sobre as variáveis selecionadas pelo procedimento não supervisionado. Os experimentos também permitiram verificar que as variáveis selecionadas por ambos os procedimentos apresentavam índices reduzidos de multicolinaridade..
5

Application de méthodes d’apprentissage profond pour images avec structure additionnelle à différents contextes

Alsène-Racicot, Laurent 05 1900 (has links)
Les méthodes d’apprentissage profond connaissent une croissance fulgurante. Une explication de ce phénomène est l’essor de la puissance de calcul combiné à l’accessibilité de données en grande quantité. Néanmoins, plusieurs applications de la vie réelle présentent des difficultés: la disponibilité et la qualité des données peuvent être faibles, l’étiquetage des données peut être ardu, etc. Dans ce mémoire, nous examinons deux contextes : celui des données limitées et celui du modèle économique CATS. Pour pallier les difficultés rencontrées dans ces contextes, nous utilisons des modèles d’apprentissage profond pour images avec structure additionnelle. Dans un premier temps, nous examinons les réseaux de scattering et étudions leur version paramétrée sur des petits jeux de données. Dans un second temps, nous adaptons les modèles de diffusion afin de proposer une alternative aux modèles à base d’agents qui sont complexes à construire et à optimiser. Nous vérifions empiriquement la faisabilité de cette démarche en modélisant le marché de l’emploi du modèle CATS. Nous constatons tout d’abord que les réseaux de scattering paramétrés sont performants sur des jeux de données de classification pour des petits échantillons de données. Nous démontrons que les réseaux de scattering paramétrés performent mieux que ceux non paramétrés, c’est-à-dire les réseaux de scattering traditionnels. En effet, nous constatons que des banques de filtres adaptés aux jeux de données permettent d’améliorer l’apprentissage. En outre, nous observons que les filtres appris se différencient selon les jeux de données. Nous vérifions également la propriété de robustesse aux petites déformations lisses expérimentalement. Ensuite, nous confirmons que les modèles de diffusion peuvent être adaptés pour modéliser le marché de l’emploi du modèle CATS dans une approche d’apprentissage profond. Nous vérifions ce fait pour deux architectures de réseau de neurones différentes. De plus, nous constatons que les performances sont maintenues pour différents scénarios impliquant l’apprentissage avec une ou plusieurs séries temporelles issues de CATS, lesquelles peuvent être tirées à partir d’hyperparamètres standards ou de perturbations de ceux-ci. / Deep learning methods are booming. An explanation of this phenomenon is the rise of computing power combined with the accessibility of large data quantity. Nevertheless, several real-life applications present difficulties: the availability and quality of data can be low, data labeling can be tricky, etc. In this thesis, we examine two contexts: that of limited data and that of the CATS economic model. To overcome the difficulties encountered in these contexts, we use deep learning models for images with additional structure. First, we examine scattering networks and study their parameterized version on small datasets. In a second step, we adapt diffusion models in order to propose an alternative to agent-based models which are complex to build and to optimize. We empirically verify the feasibility of this approach by modeling the labor market of the CATS model. We first observe that the parameterized scattering networks perform well on classification datasets for small samples of data. We demonstrate that parameterized scattering networks perform better than those not parametrized, i.e. traditional scattering networks. Indeed, we find that filterbanks adapted to the datasets make it possible to improve learning. Moreover, we observe that the learned filters differ according to the datasets. We also verify the property of robustness to small smooth deformations experimentally.. Then, we confirm that diffusion models can be adapted to model the labor market of the CATS model in a deep learning approach. We verify this fact for two different neural network architectures. Moreover, we find that performance is maintained for different scenarios involving training with one or more time series from CATS, which can be derived from standard hyperparameters or perturbations thereof.
6

Parametric Scattering Networks

Gauthier, Shanel 04 1900 (has links)
La plupart des percées dans l'apprentissage profond et en particulier dans les réseaux de neurones convolutifs ont impliqué des efforts importants pour collecter et annoter des quantités massives de données. Alors que les mégadonnées deviennent de plus en plus répandues, il existe de nombreuses applications où la tâche d'annoter plus d'un petit nombre d'échantillons est irréalisable, ce qui a suscité un intérêt pour les tâches d'apprentissage sur petits échantillons. Il a été montré que les transformées de diffusion d'ondelettes sont efficaces dans le cadre de données annotées limitées. La transformée de diffusion en ondelettes crée des invariants géométriques et une stabilité de déformation. Les filtres d'ondelettes utilisés dans la transformée de diffusion sont généralement sélectionnés pour créer une trame serrée via une ondelette mère paramétrée. Dans ce travail, nous étudions si cette construction standard est optimale. En nous concentrant sur les ondelettes de Morlet, nous proposons d'apprendre les échelles, les orientations et les rapports d'aspect des filtres. Nous appelons notre approche le Parametric Scattering Network. Nous illustrons que les filtres appris par le réseau de diffusion paramétrique peuvent être interprétés en fonction de la tâche spécifique sur laquelle ils ont été entrainés. Nous démontrons également empiriquement que notre transformée de diffusion paramétrique partage une stabilité aux déformations similaire à la transformée de diffusion traditionnelle. Enfin, nous montrons que notre version apprise de la transformée de diffusion génère des gains de performances significatifs par rapport à la transformée de diffusion standard lorsque le nombre d'échantillions d'entrainement est petit. Nos résultats empiriques suggèrent que les constructions traditionnelles des ondelettes ne sont pas toujours nécessaires. / Most breakthroughs in deep learning have required considerable effort to collect massive amounts of well-annotated data. As big data becomes more prevalent, there are many applications where annotating more than a small number of samples is impractical, leading to growing interest in small sample learning tasks and deep learning approaches towards them. Wavelet scattering transforms have been shown to be effective in limited labeled data settings. The wavelet scattering transform creates geometric invariants and deformation stability. In multiple signal domains, it has been shown to yield more discriminative representations than other non-learned representations and to outperform learned representations in certain tasks, particularly on limited labeled data and highly structured signals. The wavelet filters used in the scattering transform are typically selected to create a tight frame via a parameterized mother wavelet. In this work, we investigate whether this standard wavelet filterbank construction is optimal. Focusing on Morlet wavelets, we propose to learn the scales, orientations, and aspect ratios of the filters to produce problem-specific parameterizations of the scattering transform. We call our approach the Parametric Scattering Network. We illustrate that filters learned by parametric scattering networks can be interpreted according to the specific task on which they are trained. We also empirically demonstrate that our parametric scattering transforms share similar stability to deformations as the traditional scattering transforms. We also show that our approach yields significant performance gains in small-sample classification settings over the standard scattering transform. Moreover, our empirical results suggest that traditional filterbank constructions may not always be necessary for scattering transforms to extract useful representations.
7

On discovering and learning structure under limited supervision

Mudumba, Sai Rajeswar 08 1900 (has links)
Les formes, les surfaces, les événements et les objets (vivants et non vivants) constituent le monde. L'intelligence des agents naturels, tels que les humains, va au-delà de la simple reconnaissance de formes. Nous excellons à construire des représentations et à distiller des connaissances pour comprendre et déduire la structure du monde. Spécifiquement, le développement de telles capacités de raisonnement peut se produire même avec une supervision limitée. D'autre part, malgré son développement phénoménal, les succès majeurs de l'apprentissage automatique, en particulier des modèles d'apprentissage profond, se situent principalement dans les tâches qui ont accès à de grands ensembles de données annotées. Dans cette thèse, nous proposons de nouvelles solutions pour aider à combler cette lacune en permettant aux modèles d'apprentissage automatique d'apprendre la structure et de permettre un raisonnement efficace en présence de tâches faiblement supervisés. Le thème récurrent de la thèse tente de s'articuler autour de la question « Comment un système perceptif peut-il apprendre à organiser des informations sensorielles en connaissances utiles sous une supervision limitée ? » Et il aborde les thèmes de la géométrie, de la composition et des associations dans quatre articles distincts avec des applications à la vision par ordinateur (CV) et à l'apprentissage par renforcement (RL). Notre première contribution ---Pix2Shape---présente une approche basée sur l'analyse par synthèse pour la perception. Pix2Shape exploite des modèles génératifs probabilistes pour apprendre des représentations 3D à partir d'images 2D uniques. Le formalisme qui en résulte nous offre une nouvelle façon de distiller l'information d'une scène ainsi qu'une représentation puissantes des images. Nous y parvenons en augmentant l'apprentissage profond non supervisé avec des biais inductifs basés sur la physique pour décomposer la structure causale des images en géométrie, orientation, pose, réflectance et éclairage. Notre deuxième contribution ---MILe--- aborde les problèmes d'ambiguïté dans les ensembles de données à label unique tels que ImageNet. Il est souvent inapproprié de décrire une image avec un seul label lorsqu'il est composé de plus d'un objet proéminent. Nous montrons que l'intégration d'idées issues de la littérature linguistique cognitive et l'imposition de biais inductifs appropriés aident à distiller de multiples descriptions possibles à l'aide d'ensembles de données aussi faiblement étiquetés. Ensuite, nous passons au paradigme d'apprentissage par renforcement, et considérons un agent interagissant avec son environnement sans signal de récompense. Notre troisième contribution ---HaC--- est une approche non supervisée basée sur la curiosité pour apprendre les associations entre les modalités visuelles et tactiles. Cela aide l'agent à explorer l'environnement de manière autonome et à utiliser davantage ses connaissances pour s'adapter aux tâches en aval. La supervision dense des récompenses n'est pas toujours disponible (ou n'est pas facile à concevoir), dans de tels cas, une exploration efficace est utile pour générer un comportement significatif de manière auto-supervisée. Pour notre contribution finale, nous abordons l'information limitée contenue dans les représentations obtenues par des agents RL non supervisés. Ceci peut avoir un effet néfaste sur la performance des agents lorsque leur perception est basée sur des images de haute dimension. Notre approche a base de modèles combine l'exploration et la planification sans récompense pour affiner efficacement les modèles pré-formés non supervisés, obtenant des résultats comparables à un agent entraîné spécifiquement sur ces tâches. Il s'agit d'une étape vers la création d'agents capables de généraliser rapidement à plusieurs tâches en utilisant uniquement des images comme perception. / Shapes, surfaces, events, and objects (living and non-living) constitute the world. The intelligence of natural agents, such as humans is beyond pattern recognition. We excel at building representations and distilling knowledge to understand and infer the structure of the world. Critically, the development of such reasoning capabilities can occur even with limited supervision. On the other hand, despite its phenomenal development, the major successes of machine learning, in particular, deep learning models are primarily in tasks that have access to large annotated datasets. In this dissertation, we propose novel solutions to help address this gap by enabling machine learning models to learn the structure and enable effective reasoning in the presence of weakly supervised settings. The recurring theme of the thesis tries to revolve around the question of "How can a perceptual system learn to organize sensory information into useful knowledge under limited supervision?" And it discusses the themes of geometry, compositions, and associations in four separate articles with applications to computer vision (CV) and reinforcement learning (RL). Our first contribution ---Pix2Shape---presents an analysis-by-synthesis based approach(also referred to as inverse graphics) for perception. Pix2Shape leverages probabilistic generative models to learn 3D-aware representations from single 2D images. The resulting formalism allows us to perform a novel view synthesis of a scene and produce powerful representations of images. We achieve this by augmenting unsupervised learning with physically based inductive biases to decompose a scene structure into geometry, pose, reflectance and lighting. Our Second contribution ---MILe--- addresses the ambiguity issues in single-labeled datasets such as ImageNet. It is often inappropriate to describe an image with a single label when it is composed of more than one prominent object. We show that integrating ideas from Cognitive linguistic literature and imposing appropriate inductive biases helps in distilling multiple possible descriptions using such weakly labeled datasets. Next, moving into the RL setting, we consider an agent interacting with its environment without a reward signal. Our third Contribution ---HaC--- is a curiosity based unsupervised approach to learning associations between visual and tactile modalities. This aids the agent to explore the environment in an analogous self-guided fashion and further use this knowledge to adapt to downstream tasks. In the absence of reward supervision, intrinsic movitivation is useful to generate meaningful behavior in a self-supervised manner. In our final contribution, we address the representation learning bottleneck in unsupervised RL agents that has detrimental effect on the performance on high-dimensional pixel based inputs. Our model-based approach combines reward-free exploration and planning to efficiently fine-tune unsupervised pre-trained models, achieving comparable results to task-specific baselines. This is a step towards building agents that can generalize quickly on more than a single task using image inputs alone.
8

Semi- Supervised and Fully Supervised Learning for Fashion Images : A Comparison Study

Mannerstråle, Carl January 2021 (has links)
Image recognition is a subfield in computer vision, representing a set of methods for analyzing images. Image recognition systems allow computers to automatically find patterns and draw conclusions directly from images. The recent growth of the ecommerce fashion industry has sparked an increased interest from research community, and subsequently industry participants have started to apply image recognition technologies to automate various processes and applications like clothing categorization, attribute tagging, automatic product recommendations and many more. However, most research have been concerned with supervised learning, which require large labeled datasets. This thesis investigates an alternative approach which could potentially mitigate the reliance of large labeled datasets. Specifically, it investigates how Semi- Supervised Learning (SSL) compares to supervised learning in the context of fashion category classification. This thesis demonstrates that a state- of- the- art SSL method to train Deep Convolutional Neural Networks can provide very close accuracy to supervised learning by a margin of approximately 1 to 3 percent for the considered set of images. / Bildigenkänning är ett delområde inom datorseende, det representerar en uppsättning metoder för att analysera bilder. Bildigenkänningssystem tillåter datorer att automatiskt hitta mönster och dra slutsatser direkt från bilder. Den senaste tillväxten inom mode e- handeln har ökat forskningsintresset inom området, detta har bidragit till att aktörer på marknaden har börjat applicera bildigenkänningstekniker för att automatisera diverse processer och applikationer, som till exempel klädeskategorisering, märkning av attribut, automatiska produktrekommendationer med flera. Dock så har majoriteten av all forskning inom detta område har fokuserat på övervakad inlärning, vilket kräver stora annoterade dataset, den här uppsatsen undersöker istället en alternativ metod, som potentiellt kan minska beroendet på stora annoterade dataset. Specifikt så undersöks och jämförs semiövervakad inlärning med övervakad inlärning vid kategorisering av modebilder. Resultaten visar att en toppmodern semiövervakad inlärningsmetod för att träna ett djupt neuralt nätverk kan åstadkomma en precision väldigt nära övervakad inlärning, med en marginal på ungefär 1 till 3 procent för de använda modebilderna.

Page generated in 0.0408 seconds