• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Baseline-Free and Self-Powered Structural Health Monitoring

Anton, Steven Robert 23 July 2008 (has links)
The research presented in this thesis is based on improving current structural health monitoring (SHM) technology. Structural health monitoring is a damage detection technique that involves placing intelligent sensors on a structure, periodically recording data from the sensors, and using statistical methods to analyze the data in order to assess the condition of the structure. This work focuses on improving two areas of SHM; baseline management and energy supplies. Several successful SHM methods have been developed in which prerecorded baseline measurements are compared to current measurements in order to identify damage. The need to compare new data to a prerecorded baseline can present several complications including data management issues and difficulty in controlling the effects of varying environmental conditions on the data. Another potential area for improvement in SHM systems deals with their energy supplies. Many SHM systems currently require wired power supplies or batteries to operate. Practical SHM applications often require inexpensive, stand alone sensors, data acquisition, and processing hardware that does not require maintenance. To address the issue of baseline management, a novel SHM technique is developed. This new method accomplishes instantaneous baseline measurements by deploying an array of piezoelectric sensors/actuators used for Lamb wave propagation-based SHM such that data recorded from equidistant sensor-actuator paths can be used to instantaneously identify several common features of undamaged paths. Once identified, features from these undamaged paths can be used to form a baseline for real-time damage detection. This method utilizes the concept of sensor diagnostics, a recently developed technique that minimizes false damage identification and measurement distortion caused by faulty sensors. Several aspects of the instantaneous baseline damage detection method are explored in this work including the implementation of sensor diagnostics, determination of the features best used to identify damage, development of signal processing algorithms used to analyze data, and the comparison of two sensor/actuator deployment schemes. The ultimate goal in the development of practical SHM systems is to create autonomous damage detection systems. A limiting factor in current SHM technology is the energy supply required to operate the system. Many existing SHM systems utilize wired power supplies or batteries to power sensors, data transmission, data acquisition, and data processing hardware. Although batteries eliminate the need to run wires to SHM hardware, their periodic replacement requires components to be placed in easily accessible locations which is not always practical, especially in embedded applications. Additionally, there is a high cost associated with battery monitoring and replacement. In an effort to eliminate replaceable energy supplies in SHM systems, the concept of energy harvesting is investigated. Energy harvesting devices are designed to capture surrounding ambient energy and convert it into usable electrical energy. Several types of energy harvesting exist, including vibration, thermal, and solar harvesting. A solar energy harvesting system is developed for use in powering SHM hardware. Integrating energy harvesting technology into SHM systems can provide autonomous health monitoring of structures. / Master of Science
12

Conception des modulateurs sigma-delta d'ordre élévé pour des convertisseurs analogique-numérique en parallèle

Javidan, Mohammad 18 December 2009 (has links) (PDF)
Dans ce travail intitulé « Conception de modulateurs Sigma-Delta d'ordre élevé pour convertisseurs analogique-numérique en parallèle », les travaux ont été menés dans le contexte de la radio logicielle. La voie proposée pour la réalisation du convertisseur analogique-numérique, élément clé et bloquant de la radio logicielle, est une structure composée de plusieurs modulateurs sigma-delta passe-bande à temps continu mis en parallèle. Après avoir énuméré les différentes spécifications auxquelles le modulateur doit satisfaire, une nouvelle méthodologie de design à été proposé. Un état de l'art des différentes technologies de réalisation des filtres du modulateur a été réalisé, aboutissant à l'utilisation de résonateurs à filtres à ondes d'onde de Lamb. Les caractéristiques de ce résonateur ont été présentées ainsi qu'un circuit de commande permettant la compensation des inconvénients. Après avoir défini une novelle topologie et le résonateur, une méthode pour optimiser les performances de chaque modulateur en fonction des imperfections de l'électronique utilisée pour l'implémentation en fonction de la fréquence centrale de chacun d'entre eux a été proposé. Un travail d'analyse permettant de mettre en évidence l'influence de chacun des défauts électroniques importants sur les performances globales du modulateur, que ce soit en termes de résolution ou de stabilité, a été développé. Le comportement de la fonction de transfert de signal (STF) du système optimisé ne correspond pas à un filtre sélecteur de bande. Une modification originale de la topologie du modulateur permettant l'amélioration de la réponse en fréquence de la STF sans modifier la fonction de transfert du bruit (NTF) a été proposée. Enfin, la réalisation d'un modulateur sigma-delta à temps continu du deuxième ordre au niveau layout a été effectuée. La réduction de l'ordre est justifiée par le fait que l'intégration d'un filtre à onde de Lamb n'est pas encore un processus bien maitrisé et que son utilisation dans un sixième ordre pourrait aboutir à un circuit inexploitable en termes d'analyse.
13

Advanced Thin Film Electroacoustic Devices / Avancerade Elektroakustiska Tunnfilmskomponenter

Bjurström, Johan January 2007 (has links)
The explosive development of the telecom industry and in particular wireless and mobile communications in recent years has lead to a rapid development of new component and fabrication technologies to continually satisfy the mutually exclusive requirements for better performance and miniaturization on the one hand and low cost on the other. A fundamental element in radio communications is time and frequency control, which in turn is achieved by high performance electro-acoustic components made on piezoelectric single crystalline substrates. The latter, however, reach their practical limits in terms of performance and cost as the frequency of operation reaches the microwave range. Thus, the thin film electro-acoustic technology, which uses thin piezoelectric films instead, has been recently developed to alleviate these deficiencies. This thesis explores and addresses a number of issues related to thin film synthesis on the one hand as well as component design and fabrication on other. Specifically, the growth of highly c-axis textured AlN thin films has been studied and optimized for achieving high device performance. Perhaps, one of the biggest achievements of the work is the development of a unique process for the deposition of AlN films with a mean c-axis tilt, which is of vital importance for the fabrication of resonators operating in contact with liquids, i.e. biochemical sensors. This opens the way for the development of a whole range of sensors and bio-analytical tools. Further, high frequency Lamb wave resonators have been designed, fabricated and evaluated. Performance enhancement of FBAR devices is also addressed, e.g. spurious mode suppression, temperature compensation, etc. It has been demonstrated, that even without temperature compensation, shear mode resonators operating in a liquid still exhibit an excellent performance in terms of Q (200) and coupling (~1.8%) at 1.2 GHz, resulting in a mass resolution better than 2 ng cm-2 in water, which excels that of today’s quartz sensors.
14

Damage Detection in Blade-Stiffened Anisotropic Composite Panels Using Lamb Wave Mode Conversions

January 2012 (has links)
abstract: Composite materials are increasingly being used in aircraft, automobiles, and other applications due to their high strength to weight and stiffness to weight ratios. However, the presence of damage, such as delamination or matrix cracks, can significantly compromise the performance of these materials and result in premature failure. Structural components are often manually inspected to detect the presence of damage. This technique, known as schedule based maintenance, however, is expensive, time-consuming, and often limited to easily accessible structural elements. Therefore, there is an increased demand for robust and efficient Structural Health Monitoring (SHM) techniques that can be used for Condition Based Monitoring, which is the method in which structural components are inspected based upon damage metrics as opposed to flight hours. SHM relies on in situ frameworks for detecting early signs of damage in exposed and unexposed structural elements, offering not only reduced number of schedule based inspections, but also providing better useful life estimates. SHM frameworks require the development of different sensing technologies, algorithms, and procedures to detect, localize, quantify, characterize, as well as assess overall damage in aerospace structures so that strong estimations in the remaining useful life can be determined. The use of piezoelectric transducers along with guided Lamb waves is a method that has received considerable attention due to the weight, cost, and function of the systems based on these elements. The research in this thesis investigates the ability of Lamb waves to detect damage in feature dense anisotropic composite panels. Most current research negates the effects of experimental variability by performing tests on structurally simple isotropic plates that are used as a baseline and damaged specimen. However, in actual applications, variability cannot be negated, and therefore there is a need to research the effects of complex sample geometries, environmental operating conditions, and the effects of variability in material properties. This research is based on experiments conducted on a single blade-stiffened anisotropic composite panel that localizes delamination damage caused by impact. The overall goal was to utilize a correlative approach that used only the damage feature produced by the delamination as the damage index. This approach was adopted because it offered a simplistic way to determine the existence and location of damage without having to conduct a more complex wave propagation analysis or having to take into account the geometric complexities of the test specimen. Results showed that even in a complex structure, if the damage feature can be extracted and measured, then an appropriate damage index can be associated to it and the location of the damage can be inferred using a dense sensor array. The second experiment presented in this research studies the effects of temperature on damage detection when using one test specimen for a benchmark data set and another for damage data collection. This expands the previous experiment into exploring not only the effects of variable temperature, but also the effects of high experimental variability. Results from this work show that the damage feature in the data is not only extractable at higher temperatures, but that the data from one panel at one temperature can be directly compared to another panel at another temperature for baseline comparison due to linearity of the collected data. / Dissertation/Thesis / M.S. Aerospace Engineering 2012
15

Analytical investigation of internally resonant second harmonic lamb waves in nonlinear elastic isotropic plates

Mueller, Martin Fritz 24 August 2009 (has links)
This research deals with the second harmonic generation of Lamb waves in nonlinear elastic, homogeneous, isotropic plates. These waves find current applications in the field of ultrasonic, nondestructive testing and evaluation of materials. The second harmonic Lamb wave generation is investigated analytically in order to provide information on suitable excitation modes maximizing the second harmonic amplitude. Using an existing solution for the problem of second harmonic generation in wave guides, the solution is explained for the plate and examined as to the symmetry properties of the second harmonic wave, since published results are contradictory. It is shown that the cross-modal generation of a symmetric secondary mode by an antisymmetric primary mode is possible. Modes showing internal resonance, whose conditions are nonzero power flux from the primary wave and phase velocity matching, are shown to be most useful for measurements. In addition, group velocity matching is required. A material-independent analysis of the linear Lamb mode theory provides mode types satisfying all three requirements. Using the example of an aluminum plate, the found internally resonant modes are evaluated with regard to the rate of second harmonic generation and practical issues such as excitability and ease of measurement. Pros and cons of each mode type are presented.
16

Baseline free structural health monitoring using modified time reversal method and wavelet spectral finite element models

Jayakody, Nimesh 13 December 2019 (has links)
The Lamb wave based, non-contact damage detection techniques are developed using the Modified Time Reversal (MTR) method and the model based inverse problem approach. In the first part of this work, the Lamb wave-based MTR method along with the non-contacting sensors is used for structural damage detection. The use of non-contact measurements for MTR method is validated through experimental results and finite element simulations. A novel technique in frequency-time domain is developed to detect linear damages using the MTR method. The technique is highly suitable for the detection of damages in large metallic structures, even when the damage is superficial, and the severity is low. In this technique, no baseline data are used, and all the wave motion measurements are made remotely using a laser vibrometer. Additionally, this novel MTR based technique is not affected due to changes in the material properties of a structure, environmental conditions, or structural loading conditions. Further, the MTR method is improved for two-dimensional damage imaging. The damage imaging technique is successfully tested through experimental results and finite element simulations. In the second part of this work, an inverse problem approach is developed for the detection and estimation of major damage types experienced in adhesive joints. The inverse problem solution is obtained through an optimization algorithm wherein the objective function is formulated using the Lamb wave propagation data. The technique is successfully used for the detection/estimation of cohesive damages, micro-voids, debonds, and weak bonds. Further, the inverse problem solution is separately obtained through a fully connected artificial neural network. The neural network is trained using the Lamb wave propagation data generated from Wavelet Spectral Finite Element (WSFE) model which is computationally much faster than a conventional finite element model. This inverse problem approach technique requires a single point measurement for the inspection of the entire width of the adhesive joint. The proposed technique can be used as an automated quality assurance tool during the manufacturing process, and as an inspection tool during the operational life of adhesively bonded structures.
17

Etude de la propagation des ondes élastiques de Lamb dans les matériaux composites micro/nano structurés : Application pour l’ingénierie des propriétés physiques des résonateurs électromécaniques / Lamb wave propagation in composite membranes based on micro/nano structured materials : application to resonators physical properties engineering

Moutaouekkil, Mohammed 15 December 2018 (has links)
Le contrôle de la propagation des ondes élastiques repose principalement sur la conception de milieu artificiel à base de matériaux structurés pour obtenir une ingénierie avancée de la dispersion de la propagation. Au cours de la thèse, la dispersion du mode (S0) dans des membranes micro-structurées à base d’AlN a été numériquement investiguée et les applications qui en découlent explorées. Il est mis en évidence le lien fort entre la dispersion du mode et la sensibilité aux perturbations externes en combinant la membrane d’AlN avec une couche de SiO2 structurée en rubans. En particulier, il est montré qu’il est possible d’obtenir un TCF=0 pour les résonateurs sans presque aucune dégradation du coefficient K2. Il est montré qu’il est possible d’ouvrir des bandes interdites avec une largeur de l’ordre de 50% en structurant l’AlN sous forme de rubans ou en utilisant des piliers pour former un PhnC. Sur cette base, des designs de cavités et de guides d’ondes sont proposés et leurs performances sont étudiées en fonction des paramètres géométriques. Il est également proposé un nouveau design de cavité basé sur l’introduction d’un défaut résonant dans le PhnC sous forme de disque de dimension très petite par-rapport à la taille de la cellule élémentaire. Le défaut permet d’introduire des modes quasi-plats dans le diagramme de bande et permet en conséquence la conception d’une nouvelle génération de dispositifs phononiques robustes pour des applications en traitement du signal et capteurs. Les structures optimales sont utilisées pour la conception de capteur de champs magnétiques, une sensibilité de 5% est obtenue pour le mode localisé dans le cas d’un disque magnéto-élastique / The control of elastic wave propagation relies mainly on the design of artificial media based on structured materials to achieve advanced propagation dispersion engineering. During the thesis, the dispersion of the mode (S0) in micro-structured membranes based on AlN was numerically investigated and the resulting applications explored. The strong link between mode dispersion and sensitivity to external disturbances is highlighted by combining the AlN membrane with a layer of SiO2 structured into strips. In particular, it is shown that it is possible to obtain a TCF = 0 for the resonators without any degradation of the K2 coefficient. It is shown that it is possible to open wide band-gaps of 50% by structuring the AlN in the shape of strips or using pillars to form a PhnC. On this basis, designs of cavities and waveguides are proposed and their performances are studied according to the geometrical parameters. It is also proposed a new cavity design based on the introduction of a resonant defect with a disc shape in the PhnC and presenting very small size in comparison to the unit cell. The defect makes it possible to introduce quasi-flat modes in the band diagram and consequently allows the design of a new generation of phononic devices for signal processing and sensor applications. The optimal structures are used to design a magnetic field sensor design, a sensitivity of 5% is obtained for the localized mode in the case of defect based on magneto-elastic thin film.

Page generated in 0.058 seconds