Spelling suggestions: "subject:"landau gauge"" "subject:"candau gauge""
1 |
Lattice vs. continuum: Landau gauge fixing and ’t Hooft-Polyakov monopoles.Mehta, Dhagash B. January 2010 (has links)
In this thesis we study the connection between continuum quantum field theory and corresponding lattice field theory, specifically for two cases: Landau gauge fixing and ’t Hooft-Polyakov monopoles. To study non-perturbative phenomena such as the confinement mechanism of quarks and gluons and dynamical chiral symmetry breaking in Quantum Chromodynamics (QCD), there are two major approaches: the Dyson-Schwinger equations (DSEs) approach, which is based on the covariant continuum formulation, and lattice gauge theory. The strength and beauty of lattice gauge theory is due to the fact that gauge invariance is manifest and fixing a gauge is not required. In the covariant continuum formulation of gauge theories, on the other hand, one has to deal with the redundant degrees of freedom due to gauge invariance and has to fix gauge (most popularly, Landau gauge). There, the gauge-fixing machinery is based on the so-called Faddeev-Popov procedure or more generally, the Becchi-Rouet-Stora-Tyutin (BRST) symmetry. Beyond perturbation theory this is aggravated by the existence of so-called Gribov copies, however, that satisfy the same gauge-fixing condition, but are related by gauge transformations, and are thus physically equivalent. When attempting to fix Landau gauge on the lattice to make a connection with its continuum counterpart, this ambiguity manifests itself in the Neuberger 0/0 problem that asserts that the expectation value of any physical observable will always be of the indefinite form 0/0. We explain the topological nature of this problem and how the complete cancellation of Gribov copies can be avoided in a modified lattice Landau gauge based on a new definition of gauge fields on the lattice as stereographically projected link variables. For compact U(1), where the Gribov copy problem is related to the classification the local minima of XY spin glass models, we explicitly show that there still remain Gribov copies but their number is exponentially reduced in lower dimensional models. We then formulate the corresponding Faddeev-Popov procedure on the lattice, for these models. Moreover, we explicitly demonstrate that the proposed modification circumvents the Neuberger 0/0 problem for lattices of arbitrary dimensions for compact U(1). Applied to the maximal Abelian subgroup this will avoid the perfect cancellation amongst the remaining Gribov copies for SU(N), and so the corresponding BRST formulation is also then possible for generic SU(N), in particular, for the Standard Model groups. For higher dimensional lattices, the gauge fixing conditions for both the standard and the modified lattice Landau gauges are systems of multivariate nonlinear equations, solving which in general is a highly non-trivial task. However, we show that these systems can be interpreted as systems of polynomial equations. They can then be solved exactly by computational Algebraic Geometry, the Groebner basis technique in particular, and numerically by the Polynomial Homotopy Continuation method. ’t Hooft-Polyakov monopoles play an important role in high energy physics due to their presence in grand unified theories and their usefulness in studying non-perturbative properties of quantum field theories through electric-magnetic dualities. In the second part of the thesis, we study adjoint Higgs models, which exhibit ’t Hooft-Polyakov monopoles, and have been extensively analyzed using semi-classical analysis in the continuum. However, to study them in a fully nonperturbative fashion, it is essential to put the theory on the lattice. Here, we investigate twisted C-periodic boundary conditions in SU(N) gauge field theory with an adjoint Higgs field and show that for even N with a suitable twist one can impose a non-zero magnetic charge relative to each of N − 1 residual U(1)’s in the broken phase, thereby creating ’t Hooft-Polyakov magnetic monopoles. This makes it possible then to use lattice Monte-Carlo simulations to study the properties of these monopoles in the full quantum theory and compare them with the existing results in the continuum. / Thesis (Ph.D.) -- University of Adelaide, School of Chemistry and Physics, 2010
|
2 |
The infrared behavior of lattice QCD green's functionsSternbeck, André 15 August 2006 (has links)
Diese Arbeit untersucht im Rahmen der Gittereichtheorie verschiedene Aspekte der QCD in der Landau-Eichung, insbesondere solche, die mit den Gluon- und Geist-Propagatoren bei kleinen Impulsen zusammenhängen. Die Eichgruppe ist SU(3). Wir analysieren den Einfluss unterschiedlicher systematischer Effekte. Wir zeigen, dass der Formfaktor des Geist-Propagators bei kleinen Impulsen systematisch von der Wahl der Eichkopien (Gribov-Kopien) abhängt. Hingegen können wir einen solchen Einfluss auf den Gluon-Propagator nicht feststellen. Ebenfalls wird die Verteilung der kleinsten Eigenwerte des Faddeev-Popov-Operators durch die Wahl der Eichkopien beeinflusst. Wir zeigen außerdem, dass der Einfluss dynamischer Wilson-Fermionen auf den Geist-Propagator für die untersuchten Impulse vernachlässigbar ist. Für den Gluon-Propagator können wir jedoch einen deutlichen Einfluss für große und mittlere Impulse feststellen. Zusätzlich wurden beide Propagatoren auf asymmetrischen Gittern gemessen und mit den Daten von symmetrischen Gittern verglichen. Wir vergleichen unsere Ergebnisse mit denen aus Studien von Dyson-Schwinger-Gleichungen für den Gluon- und Geist-Propagator. Wir zeigen, dass das in dieser Arbeit gefundene Niedrigimpulsverhalten im Einklang mit verschiedenen Kriterien für Confinement (Einschluss von Farbladungen) ist. Wir berechnen die laufende Kopplung, die sich als eine renormierungsgruppeninvariante Kombination der Gluon- und Geist-Formfaktoren ergibt. Unsere Ergebnisse zeigen, dass im Bereich kleiner Impulse die laufende Kopplung kleiner wird und so vermutlich kein endlicher Infrarot-Fixpunkt im Grenzfall Impuls Null angestrebt wird. Wir präsentieren außerdem eine erste nichtstörungstheoretische Berechnung der Renormierungskonstante des SU(3) Ghost-Gluon-Vertex. Wir berichten über Untersuchungen zu spektralen Eigenschaften des Faddeev-Popov-Operators. Dazu haben wir eine Reihe der kleinsten Eigenwerte und Eigenvektoren dieses Operators berechnet. / Within the framework of lattice QCD we investigate different aspects of QCD in Landau gauge using Monte Carlo simulations. In particular, we focus on the low momentum behavior of gluon and ghost propagators. The gauge group is SU(3). Different systematic effects on the gluon and ghost propagators are studied. We demonstrate the ghost dressing function to systematically depend on the choice of Gribov copies at low momentum, while the influence on the gluon dressing function is not resolvable. Also the eigenvalue distribution of the Faddeev-Popov operator is sensitive to Gribov copies. We show that the influence of dynamical Wilson fermions on the ghost propagator is negligible at the momenta available to us. On the contrary, fermions affect the gluon propagator at large and intermediate momenta. In addition, we analyze data for both propagators obtained on asymmetric lattices and compare these results with data obtained on symmetric lattices. We compare our data with results from studies of Dyson-Schwinger equations for the gluon and ghost propagators. We demonstrate that the infrared behavior of both propagators, as found in this thesis, is consistent with different criteria for confinement. However, the running coupling constant, given as a renormalization-group-invariant combination of the gluon and ghost dressing functions, does not expose a finite infrared fixed point. Rather the data are in favor of an infrared vanishing coupling constant. We also report on a first nonperturbative computation of the SU(3) ghost-gluon-vertex renormalization constant. We present results of an investigation of the spectral properties of the Faddeev-Popov operator. For this we have calculated the low-lying eigenvalues and eigenmodes of the Faddeev-Popov operator.
|
3 |
Gluon and ghost propagator studies in lattice QCD at finite temperatureAouane, Rafik 14 May 2013 (has links)
Die im infraroten Impulsbereich der Quantenchromodynamik (QCD) berechneten Gluon- und Ghost-Propagatoren spielen eine große Rolle für das sogenannte Confinement der Quarks und Gluonen. Sie sind Gegenstand intensiver Foschungen dank nicht-perturbativer Methoden basierend auf Dyson-Schwinger- (DS) und funktionalen Renormierungsgruppen-Gleichungen (FRG). Darüber hinaus sollte es deren Verhalten bei endlichen Temperaturen erlauben, den chiralen und Deconfinement-Phasenübergang bzw. das Crossover in der QCD besser aufzuklären. Unser Zugang beruht auf der gitter-diskretisierten QCD (LQCD), die es als ab-initio-Methode gestattet, verschiedenste störungstheoretisch nicht zugängliche QCD-Observablen der hadronischen Welt zu berechnen. Wir untersuchen das Temperaturverhalten der Gluon- und Ghost-Propagatoren in der Landau-Eichung für die reine Gluodynamik und die volle QCD. Für den Gluon-Propagator berechnen wir deren longitudinale (DL) sowie transversale (DT) Komponenten. Ziel ist es, Datensätze in Form von Fit-Formeln zu liefern, welche als Input für die DS- (oder FRG-) Gleichungen verwendet werden können. Wir beschäftigen uns mit der vollen (Nf=2) LQCD unter Verwendung der sogenannten twisted mass Fermiondiskretisierung. Von der tmfT-Kollaboration wurden uns dafür Eichfeldkonfigurationen für Temperaturen im Crossover-Bereich sowie jeweils für drei fixierte Pion-Massenwerte im Intervall [300, 500] MeV bereitgestellt. Schließlich berechnen wir innerhalb der reinen SU(3) Eichtheorie (bei T=0) den Landau Gluon-Propagator unter Verwendung verschiedener Eichfixierungskriterien. Unser Ziel ist es, den Einfluss von Eich-Kopien mit minimalen (nicht-trivialen) Eigenwerten des Faddeev-Popov-Operators zu verstehen. Eine solche Studie soll klären, wie Gribov-Kopien das Verhalten der Gluon- und Ghost-Propagatoren im infraroten Bereich prinzipiell beeinflussen. / Gluon and ghost propagators in quantum chromodynamics (QCD) computed in the infrared momentum region play an important role to understand quark and gluon confinement. They are the subject of intensive research thanks to non-perturbative methods based on Dyson-Schwinger (DS) and functional renormalization group (FRG) equations. Moreover, their temperature behavior might also help to explore the chiral and deconfinement phase transition or crossover within QCD at non-zero temperature. Our prime tool is the lattice discretized QCD (LQCD) providing a unique ab-initio non-perturbative approach to deal with the computation of various observables of the hadronic world. We investigate the temperature dependence of Landau gauge gluon and ghost propagators in pure gluodynamics and in full QCD. Regarding the gluon propagator, we compute its longitudinal DL as well its transversal DT components. The aim is to provide a data set in terms of fitting formulae which can be used as input for DS (or FRG) equations. We deal with full (Nf=2) LQCD with the twisted mass fermion discretization. We employ gauge field configurations provided by the tmfT collaboration for temperatures in the crossover region and for three fixed pion mass values in the range [300,500] MeV. Finally, within SU(3) pure gauge theory (at T=0) we compute the Landau gauge gluon propagator according to different gauge fixing criteria. Our goal is to understand the influence of gauge copies with minimal (non-trivial) eigenvalues of the Faddeev-Popov operator.
|
Page generated in 0.0597 seconds